基于伴隨方法的離心泵葉輪優(yōu)化研究
[Abstract]:With the development of modern flow test technology and mobile computing technology, the flow structure and performance optimization in centrifugal pump are the hot spots of hydraulic research. However, the research progress of the inverse problem and the optimization of the centrifugal pump is slow, mainly because of the complex implicit relationship between the hydraulic performance and the internal flow channel shape of the centrifugal pump. At present, the hydraulic optimization method for the centrifugal pump mainly includes the optimization method based on the evolutionary algorithm, the optimization method based on the gradient algorithm, the optimization method based on the test design response surface, and the like. In a centrifugal pump optimization method based on the evolutionary algorithm and the response surface method, it is necessary to estimate the objective function for each sample, and to calculate the flow field many times when the number of variable dimensions is large, and the calculation amount is huge. The main difficulty of the gradient optimization method is that the objective function is difficult to calculate the gradient vector of the design variable, and the calculated amount increases with the number of dimensions of the design variable as the geometric series. With the development of the flow theory, the accompanying method is widely used in the optimization control of the flow, A. Jameson proposes to apply the adjoint method to the optimization of the aerofoils, and the method can greatly reduce the calculation amount when solving the gradient of the control variable with the objective function with the flow constraint problem. In this study, an optimization study on the inverse problem of centrifugal pump is presented in this paper. The specific study includes the following aspects: 1. The hydraulic anti-design of the impeller of the centrifugal pump is carried out with the accompanying method. In this paper, the mathematical expression of the adjoint equation and the boundary condition is derived, and the expression formula and the numerical solution of the final objective function gradient vector are derived. The Reynolds-averaged Navier-Stokes equations (RANS) are used in the flow field. The adjoint equation based on the three-dimensional Euler equation is used for solving the adjoint variable field The solution of the three-dimensional impeller of the centrifugal pump has been successfully developed by the effective combination of the mesh generation, the flow field calculation, the numerical solution of the adjoint equation, the gradient vector solution of the final target function, the blade bone line updating program and the optimization algorithm. 2. The inverse problem of the centrifugal pump and the mathematical expression of the variables involved in the optimization of the centrifugal pump and the one-to-one correspondence between the coefficients of the coefficient type partial differential equation and the coefficient of the adjoint equation are derived in detail. The optimal design theory based on the adjoint method and the three-dimensional Navier-Stokes equations is derived from the boundary conditions. The optimal design theory is derived in detail under the Cartesian coordinates, and the mathematical description form of the adjoint equation under the Cartesian coordinate system is obtained. In combination with a given objective function, the corresponding boundary condition of the adjoint equation and the key objective function are derived. The final gradient expression of the number is 4. The adjoint variable field, which is solved with the method, is the coupling of the CFD result based on the centrifugal pump model. The coupling between the flow field and the adjoint variable field is carried out by using the Cosol Multiphysics multi-physical field coupling software, and the MATLAB software is applied to the above two results. The impeller blade bone line update procedure, which is stable and feasible, can also be used for proper modification The optimization design of the other objective functions. 5. The efficiency of the flow Q and the head H at the design condition point is used as the optimization target, and the torque acting on the impeller is used as the optimization objective function due to the small variation of the head H in the optimization process. The method obtains the gradient expression of the variable of the target function and the gradient vector of the control variable along the target function, The design of the pump when the objective function takes the minimum value. At this time, the head, efficiency and torque of the model centrifugal pump The results of the calculation show that the proposed method is applied to the low-specific speed centrifugation.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TH311
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許洪元,高志強(qiáng),吳玉林;離心泵葉輪中固體顆粒運(yùn)動(dòng)軌跡計(jì)算[J];工程熱物理學(xué)報(bào);1993年04期
2 朱士燦,劉振忠;離心泵葉輪葉片通道三元流場(chǎng)數(shù)值解法的一些研究(與解析解的對(duì)比)[J];工程熱物理學(xué)報(bào);1988年03期
3 張凱釗;;世界泵業(yè)文獻(xiàn)題錄[J];水泵技術(shù);2007年03期
4 于天明;仲劍鋒;;離心泵的汽蝕及提高抗汽蝕能力的措施[J];化工裝備技術(shù);2010年03期
5 王松嶺,安連鎖;低比轉(zhuǎn)數(shù)離心泵葉輪設(shè)計(jì)方法探討[J];流體機(jī)械;1991年12期
6 袁壽其,陳次昌,曹武陵;離心泵葉輪內(nèi)的真實(shí)流動(dòng)和射流—尾流模型[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年02期
7 陳次昌;;離心泵葉輪主要幾何尺寸的計(jì)算(提高機(jī)輔設(shè)計(jì)速度和精度的研究之一)[J];排灌機(jī)械;1985年01期
8 龍方;用能量準(zhǔn)則對(duì)離心泵葉輪參數(shù)關(guān)系的優(yōu)化探索[J];湖南農(nóng)機(jī);1997年03期
9 楊敏官,劉棟,賈衛(wèi)東,王春林;離心泵葉輪中固液兩相流動(dòng)的數(shù)值模擬[J];水泵技術(shù);2005年04期
10 萬毅,柯堅(jiān);離心泵流道和泵腔內(nèi)流場(chǎng)的試驗(yàn)研究[J];機(jī)械工程學(xué)報(bào);2005年10期
相關(guān)會(huì)議論文 前2條
1 宋婷婷;吳蘭鷹;;基于pro/e的離心泵葉輪建模及有限元仿真[A];北京力學(xué)會(huì)第14屆學(xué)術(shù)年會(huì)論文集[C];2008年
2 張春花;王勇;張永泉;;新形勢(shì)下工藝管理中的問題與探討(摘要)[A];2010全國(guó)機(jī)電企業(yè)工藝年會(huì)《上海電氣杯》征文論文集[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 朱榮生;離心泵葉輪不等揚(yáng)程水力設(shè)計(jì)方法研究[D];江蘇大學(xué);2011年
2 張人會(huì);離心泵葉片的參數(shù)化設(shè)計(jì)及其優(yōu)化研究[D];蘭州理工大學(xué);2010年
3 任蕓;離心泵內(nèi)不穩(wěn)定流動(dòng)的試驗(yàn)及數(shù)值模型研究[D];江蘇大學(xué);2013年
4 王凱;離心泵多工況水力設(shè)計(jì)和優(yōu)化及其應(yīng)用[D];江蘇大學(xué);2011年
5 邵杰;小型離心模型泵非定常流動(dòng)試驗(yàn)研究及數(shù)值模擬[D];清華大學(xué);2009年
6 王春林;旋流自吸泵設(shè)計(jì)及內(nèi)部流動(dòng)研究[D];江蘇大學(xué);2010年
7 付強(qiáng);1000MW核電站離心式上充泵水力設(shè)計(jì)與結(jié)構(gòu)可靠性研究[D];江蘇大學(xué);2010年
8 張翔;不銹鋼沖壓焊接離心泵能量轉(zhuǎn)換特性與設(shè)計(jì)方法[D];江蘇大學(xué);2011年
9 王勇;離心泵空化及其誘導(dǎo)振動(dòng)噪聲研究[D];江蘇大學(xué);2011年
10 陳斌;低比轉(zhuǎn)速無過載排污泵優(yōu)化設(shè)計(jì)及實(shí)驗(yàn)研究[D];江蘇大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 胡季;離心泵葉輪的優(yōu)化設(shè)計(jì)研究[D];昆明理工大學(xué);2013年
2 張寧;離心泵葉輪計(jì)算機(jī)輔助設(shè)計(jì)及其運(yùn)動(dòng)仿真研究[D];中南大學(xué);2012年
3 馬玉輝;旋轉(zhuǎn)與曲率影響下離心泵葉輪內(nèi)流的數(shù)值研究[D];大連理工大學(xué);2010年
4 劉永艷;沖壓焊接離心泵葉輪的優(yōu)化設(shè)計(jì)與制造工藝研究[D];山東理工大學(xué);2010年
5 朱波;離心泵葉輪特殊切割方法的研究與探討[D];浙江工業(yè)大學(xué);2012年
6 宋金;雙吸型離心泵葉輪建模及流場(chǎng)分析[D];湘潭大學(xué);2013年
7 吳承福;離心泵葉輪內(nèi)鹽析晶體顆粒運(yùn)動(dòng)及粒徑分布特性的研究[D];江蘇大學(xué);2010年
8 千勃興;離心泵葉輪葉片的有限元分析及優(yōu)化[D];西北農(nóng)林科技大學(xué);2013年
9 李顏;基于CFD的船用離心泵葉輪抗汽蝕優(yōu)化設(shè)計(jì)[D];大連海事大學(xué);2012年
10 杜強(qiáng);基于UG NX的離心泵葉輪數(shù)字化制造技術(shù)研究[D];山東理工大學(xué);2010年
,本文編號(hào):2326193
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2326193.html