基于隨機(jī)共振的滾動(dòng)軸承微弱特征檢測(cè)技術(shù)應(yīng)用研究
[Abstract]:Bistable stochastic resonance (bistable stochastic resonance) is a nonlinear phenomenon that occurs only when there is a certain synergy among noise, bistable system and input signal. For a certain large parameter noisy signal, it is necessary to jointly adjust the multiple parameters of stochastic resonance in order to produce stochastic resonance. However, there are few studies on the coupling among system parameters, signal frequency and noise intensity, and the joint parameter tuning of stochastic resonance is unguided, which can only depend on human experience. Therefore, the study of adaptive stochastic resonance is carried out in this paper, focusing on the difficult problem of multi-parameter joint regulation of stochastic resonance. In order to solve the problem that the parameter selection of stochastic resonance system depends on artificial experience and the difficulty of selecting step size for variable step size stochastic resonance calculation, an adaptive variable step stochastic resonance method based on particle swarm optimization algorithm is proposed. The SNR of the stochastic resonance output is taken as the fitness function of the particle swarm optimization algorithm. The adaptive solution of the variable step size stochastic resonance optimal output is realized by synchronously optimizing the system parameters and the computational step size. The simulation data and engineering data are used to verify the method. The analysis results show that the method is simple, wide and convergent, and can effectively detect the high frequency weak signal in the background of strong noise. It has a good prospect of engineering application. The adaptive variable step size stochastic resonance using particle swarm optimization algorithm is integrated into cascade bistable stochastic resonance, and an adaptive noise reduction method of cascade bistable stochastic resonance is proposed. The adaptive output of cascaded stochastic resonance system is realized, and the purpose of adaptive noise reduction for engineering signals under large parameters is achieved. The method is applied to the simulation data and the engineering measured data. The analysis results show that the method can eliminate the high frequency noise interference in the large parameter signal quickly and effectively, and highlight the low frequency useful signal components, and the noise reduction effect is remarkable. Combining the cascaded bistable stochastic resonance adaptive noise reduction method with empirical mode decomposition, an empirical mode decomposition method based on cascaded bistable stochastic resonance adaptive noise reduction is proposed. This method can eliminate the boundary effect of empirical mode decomposition and improve the efficiency of decomposition. In the experimental study, the original input signal and cascade bistable output signal are decomposed by empirical mode decomposition. By comparing and analyzing these decomposition results, it can be found that this method can improve the signal to noise ratio at the same time. Reduce the number of IMF components and improve the quality of empirical mode decomposition.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH133.33;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊建文;賈民平;許飛云;;經(jīng)驗(yàn)?zāi)J椒纸庠谘h(huán)平穩(wěn)故障信號(hào)分析中的應(yīng)用[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年01期
2 朱利超;;基于經(jīng)驗(yàn)?zāi)J椒纸獾娜梭w生命參數(shù)檢測(cè)[J];電子科技;2010年12期
3 張合勇;任德明;趙衛(wèi)疆;曲彥臣;;圖像處理中二維經(jīng)驗(yàn)?zāi)J椒纸獾母倪M(jìn)算法[J];光學(xué)學(xué)報(bào);2009年05期
4 冷永剛,王太勇;二次采樣用于隨機(jī)共振從強(qiáng)噪聲中提取弱信號(hào)的數(shù)值研究[J];物理學(xué)報(bào);2003年10期
5 冷永剛,王太勇,秦旭達(dá),李瑞欣,郭焱;二次采樣隨機(jī)共振頻譜研究與應(yīng)用初探[J];物理學(xué)報(bào);2004年03期
6 冷永剛;王太勇;郭焱;吳振勇;;雙穩(wěn)隨機(jī)共振參數(shù)特性的研究[J];物理學(xué)報(bào);2007年01期
7 李強(qiáng);王太勇;冷永剛;何改云;何慧龍;;基于近似熵測(cè)度的自適應(yīng)隨機(jī)共振研究[J];物理學(xué)報(bào);2007年12期
8 萬頻;詹宜巨;李學(xué)聰;王永華;;一種單穩(wěn)隨機(jī)共振系統(tǒng)信噪比增益的數(shù)值研究[J];物理學(xué)報(bào);2011年04期
9 王晶;張慶;梁霖;張熠卓;徐光華;;采用遺傳算法的自適應(yīng)隨機(jī)共振系統(tǒng)弱信號(hào)檢測(cè)方法研究[J];西安交通大學(xué)學(xué)報(bào);2010年03期
10 趙艷菊;王太勇;任成祖;冷永剛;徐躍;張攀;;強(qiáng)噪聲背景下的經(jīng)驗(yàn)?zāi)J椒纸庋芯縖J];振動(dòng)與沖擊;2009年03期
本文編號(hào):2322559
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2322559.html