聲發(fā)射檢測(cè)技術(shù)在故障診斷中的應(yīng)用研究
[Abstract]:As a kind of nondestructive testing technology developed in recent years, acoustic emission (AE) detection technology has attracted wide attention due to its unique advantages. In this paper, the application of acoustic emission detection technology in fault diagnosis is studied from different aspects. The main contents are as follows: the basic knowledge of acoustic emission and acoustic emission technology related theory, The concept and characteristics of acoustic emission signal are introduced. The principle of commonly used acoustic emission (AE) signal localization method is described. According to the four sensor array plane positioning principle and MATLAB program, the planar acoustic emission source location is realized. The validity of the program is verified by experiments, and the factors influencing the positioning accuracy are analyzed. The different processing and analysis methods of bearing acoustic emission signal are studied, and the fault diagnosis of rolling bearing is realized. The characteristics of acoustic emission signals produced by bearings in different states are analyzed by using time-domain correlation characteristic parameters, and the acoustic emission signals of bearings are processed and analyzed in frequency domain by the traditional Fourier transform method. Aiming at the advantage of wavelet analysis in time frequency analysis, wavelet analysis is used to analyze the acoustic emission signal of bearing. This paper focuses on the intelligent diagnosis method based on BP neural network, proposes a attribute reduction method based on principal component analysis and rough set, and introduces the realization process of this method in detail. Finally, the reduced parameters are input into the BP neural network for fault type identification. At the same time, through the analysis of the experimental data, it is proved that this method can effectively improve the convergence speed and recognition accuracy of the neural network. The application principle, characteristics and methods of acoustic emission technology in fatigue crack detection, pressure vessel detection and transformer partial discharge detection are described. The detection process of acoustic emission technology in three cases is introduced in detail with an example, and the effectiveness of acoustic emission technology in these aspects is proved from the practical point of view.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高佃波;劉紅光;陸森林;;基于BP神經(jīng)網(wǎng)絡(luò)和振動(dòng)測(cè)量的軸承故障診斷[J];長(zhǎng)沙交通學(xué)院學(xué)報(bào);2006年02期
2 金鑫;任獻(xiàn)彬;周亮;;智能故障診斷技術(shù)研究綜述[J];國(guó)外電子測(cè)量技術(shù);2009年07期
3 袁臣;;聲發(fā)射信號(hào)處理分析[J];電子設(shè)計(jì)工程;2011年21期
4 霍志紅,張志學(xué),郭江,唐必光;基于神經(jīng)網(wǎng)絡(luò)的故障診斷研究[J];工業(yè)控制計(jì)算機(jī);2001年10期
5 宋建恒;;頻譜分析法診斷滾動(dòng)軸承故障[J];青?萍;2007年03期
6 司娟寧;劉金園;董澤;廖薇;;基于主成分分析與支持向量機(jī)的汽輪機(jī)故障診斷[J];汽輪機(jī)技術(shù);2011年02期
7 宋京偉;主分量分析法及在故障診斷中的應(yīng)用[J];中國(guó)設(shè)備工程;2001年10期
8 王硯軍,俞美,程鴻機(jī),呂振;設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷技術(shù)的基本原理與方法——聲發(fā)射技術(shù)[J];山東建材;2000年04期
9 馬智明,陽(yáng)憲惠;主成分分析法在故障診斷中的應(yīng)用[J];數(shù)理統(tǒng)計(jì)與管理;2000年06期
10 王?;陳莉;;聲發(fā)射檢測(cè)技術(shù)的原理及應(yīng)用[J];陜西國(guó)防工業(yè)職業(yè)技術(shù)學(xué)院學(xué)報(bào);2010年02期
相關(guān)碩士學(xué)位論文 前2條
1 楊杰;聲發(fā)射信號(hào)處理與分析技術(shù)的研究[D];吉林大學(xué);2005年
2 郝宇寧;基于DSP的小波分析在聲發(fā)射信號(hào)處理中的應(yīng)用研究[D];廣西大學(xué);2007年
本文編號(hào):2310940
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2310940.html