天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)械論文 >

基于聚類異動搜索的風(fēng)電機(jī)組齒輪箱早期故障識別研究

發(fā)布時間:2018-10-16 10:53
【摘要】:由于地處偏僻,工作條件惡劣,風(fēng)電機(jī)組故障頻發(fā),而齒輪箱故障率也相對較高,而風(fēng)電機(jī)組的SCADA系統(tǒng)并不能很好的對振動監(jiān)測參數(shù)進(jìn)行分析,在這種情況下,風(fēng)電機(jī)組的狀態(tài)監(jiān)測與故障預(yù)警系統(tǒng)對減少維修成本、提高維修效率、節(jié)省維修時間有著重要的意義。本文主要研究風(fēng)電機(jī)組傳動系統(tǒng)齒輪箱,從齒輪箱振動信號分析出發(fā),研究齒輪箱故障機(jī)理,故障征兆,故障原因等,并對振動信號處理的時頻分析方法進(jìn)行深入的研究。 (1)論文首先分析了風(fēng)電機(jī)組齒輪箱的主要結(jié)構(gòu)、振動機(jī)理,針對齒輪箱典型的故障模式,分析了這些故障的征兆,故障原因,故障的影響,并結(jié)合齒輪、軸、軸承等振動故障特點,給出了風(fēng)電機(jī)組齒輪箱振動監(jiān)測傳感器的選擇及安裝形式和監(jiān)測測點的布置方案。 (2)分析了風(fēng)電機(jī)組齒輪箱振動信號的變工況特點,針對變工況對故障診斷帶來的困難,基于無量綱幅域參數(shù)重復(fù)性描述因子、相似性描述因子、跳躍性描述因子能有效的解決齒輪箱變轉(zhuǎn)速造成的齒輪箱振動能量的變化給故障診斷和預(yù)警帶來的困難,對齒輪箱振動信號進(jìn)行高維特征空間轉(zhuǎn)化,利用數(shù)據(jù)挖掘中k均值聚類方法對齒輪箱存在的異常信號和正常信號進(jìn)行分類,發(fā)現(xiàn)風(fēng)電機(jī)組齒輪箱振動信號存在早期故障。 (3)針對齒輪箱振動信號非線性、非平穩(wěn)的特點,采用了時頻分析中的Hilbert-Huang變換方法,通過提取時頻熵、內(nèi)稟模態(tài)能量熵特征值來判斷齒輪和軸承運行狀態(tài),提出基于IMF包絡(luò)譜來實現(xiàn)風(fēng)電機(jī)組齒輪箱復(fù)合故障的診斷,研究對齒輪箱振動信號進(jìn)行EMD頻率族分離,并對IMF分量進(jìn)行Hilbert包絡(luò)解調(diào),通過包絡(luò)譜的分析來故障診斷,實驗仿真這種方法的可行性。 (4)初步研究了風(fēng)電機(jī)組狀態(tài)監(jiān)測與故障預(yù)警系統(tǒng)的系統(tǒng)設(shè)計,從系統(tǒng)構(gòu)成上,給出了傳感器選擇的要求和意見、信號采集系統(tǒng)參數(shù)要求和狀態(tài)監(jiān)測系統(tǒng)和故障預(yù)警所要包括的故障分析功能,為風(fēng)電機(jī)組狀態(tài)監(jiān)測與故障預(yù)警系統(tǒng)的系統(tǒng)開發(fā)提供了有效的幫助。 文章最后對本論文進(jìn)行了總結(jié),并對相關(guān)技術(shù)進(jìn)行了展望。
[Abstract]:Because of its remote location, poor working conditions, frequent failures of wind turbine units and relatively high failure rate of gearboxes, the SCADA system of wind turbines is not able to analyze the vibration monitoring parameters well, in this case, The condition monitoring and fault warning system of wind turbine is of great significance to reduce maintenance cost, improve maintenance efficiency and save maintenance time. In this paper, the gearbox of the transmission system of wind turbine is studied. From the analysis of the vibration signal of the gearbox, the fault mechanism, fault symptoms and causes of the gearbox are studied. Furthermore, the time-frequency analysis method of vibration signal processing is deeply studied. (1) the main structure and vibration mechanism of the gearbox of wind turbine are analyzed firstly, aiming at the typical fault mode of the gearbox. The symptoms, causes and effects of these faults are analyzed, and the characteristics of vibration faults, such as gears and bearings, are analyzed. The selection and installation of vibration monitoring sensors and the layout of monitoring points are given. (2) the characteristics of vibration signal of wind turbine gearbox are analyzed. In view of the difficulty of fault diagnosis caused by variable working conditions, based on the repeatability description factor and similarity description factor of dimensionless amplitude domain parameters, The jump description factor can effectively solve the difficulty of fault diagnosis and early warning caused by the change of vibration energy of gearbox caused by variable speed of gearbox, and transform the vibration signal of gearbox into high dimensional characteristic space. By using the k-means clustering method in data mining, the abnormal signals and normal signals of gearbox are classified, and it is found that there are early faults in the vibration signals of gearbox of wind turbine. (3) aiming at the nonlinearity of gearbox vibration signal, In order to judge the running state of gear and bearing, the Hilbert-Huang transform method in time-frequency analysis is used to extract the eigenvalues of time-frequency entropy and intrinsic modal energy entropy. Based on the IMF envelope spectrum, this paper presents a method to diagnose the complex fault of the gearbox of wind power unit. The EMD frequency family separation of the vibration signal of the gearbox is studied, and the IMF component is demodulated by the Hilbert envelope demodulation, and the fault diagnosis is made through the analysis of the envelope spectrum. (4) the system design of wind turbine condition monitoring and fault warning system is studied preliminarily, and the requirements and opinions of sensor selection are given from the system composition. The parameter requirements of signal acquisition system and the fault analysis functions of the condition monitoring system and fault warning system provide effective help for the development of the wind turbine condition monitoring and fault warning system. At the end of the paper, the thesis is summarized, and the related technology is prospected.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TM315;TH165.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 高勝利;趙小榮;申強;;風(fēng)力發(fā)電機(jī)組齒輪箱故障診斷[J];電力電子技術(shù);2011年10期

2 陳志新;徐金梧;楊德斌;章立軍;;基于經(jīng)驗?zāi)B(tài)分解的混沌噪聲背景下弱信號檢測與信號提取[J];機(jī)械科學(xué)與技術(shù);2006年02期

3 靳同紅;莫正波;鄭德亮;王勝春;;時頻分析技術(shù)及應(yīng)用研究[J];機(jī)械科學(xué)與技術(shù);2009年01期

4 侯敬宏,黃樹紅,申_",張燕平;基于小波分析的旋轉(zhuǎn)機(jī)械振動信號定量特征研究[J];機(jī)械工程學(xué)報;2004年01期

5 于德介,程軍圣,楊宇;Hilbert-Huang變換在齒輪故障診斷中的應(yīng)用[J];機(jī)械工程學(xué)報;2005年06期

6 朱瑜;王海洋;;基于小波去噪和EMD的齒輪箱故障診斷研究[J];煤礦機(jī)械;2012年04期

7 王鳳利,馬孝江;基于局域波時頻譜的旋轉(zhuǎn)機(jī)械早期故障診斷技術(shù)[J];農(nóng)業(yè)機(jī)械學(xué)報;2005年01期

8 彭華東;陳曉清;任明;楊代勇;董明;;風(fēng)電機(jī)組故障智能診斷技術(shù)及系統(tǒng)研究[J];電網(wǎng)與清潔能源;2011年02期

9 陳忠,鄭時雄;基于經(jīng)驗?zāi)J椒纸?EMD)的齒輪箱齒輪故障診斷技術(shù)研究[J];振動工程學(xué)報;2003年02期

10 來五星,軒建平,史鐵林,楊叔子;Wigner-Ville時頻分布研究及其在齒輪故障診斷中的應(yīng)用[J];振動工程學(xué)報;2003年02期

相關(guān)碩士學(xué)位論文 前1條

1 李虎;大型風(fēng)電機(jī)組振動狀態(tài)監(jiān)測系統(tǒng)開發(fā)[D];華北電力大學(xué)(北京);2009年

,

本文編號:2274137

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2274137.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4c6e3***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com