AMTEC內(nèi)毛細(xì)泵回路流動(dòng)與換熱機(jī)理研究
[Abstract]:Alkali metal thermoelectric direct converter (Alkali Metal Thermal to Electric Converter-AMTEC) is a kind of power generating device which uses 尾 "-Al _ 2O _ 3 solid electrolyte as good conductor for ion and good for electronic insulation. It has the characteristics of high conversion efficiency and no moving parts, etc. AMTEC is a promising technology in space and terrestrial applications. The power of AMTEC is affected not only by hot end temperature, cold end temperature, but also by capillary pump performance. The performance of capillary pump directly affects the efficiency of the converter. The reliability of capillary pump is mainly determined by the thermodynamic limit of the liquid sodium phase transition occurring in the porous core evaporator. Therefore, it is meaningful to study the mechanism of fluid flow and heat transfer in capillary pump. In this paper, a two-dimensional axisymmetric numerical model coupled with dynamics and thermodynamics is established. The phase field method is used to capture the gas-liquid interface, and the phase transition and capillary force are simulated by adding a source term to the equation. The model can easily calculate the pressure field, velocity field and temperature field of capillary pump. It can track the gas-liquid interface accurately and solve the problem of velocity and pressure discontinuity at the gas-liquid interface. The model is used to simulate and analyze the flow characteristics, heat transfer characteristics and reliability of capillary pumps. The simulation results show that the flow energy of capillary pump increases with the increase of average pore size, porosity, temperature, thermal conductivity of materials of heat conduction column and evaporator, and decreases with the increase of current and thermal conductivity of core materials. The evaporation rate of capillary pump increases with the increase of the porosity of evaporator, the thermal conductivity of heat conduction column and evaporator, and decreases with the increase of core porosity and thermal conductivity of material. The evaporation rate and thermal efficiency of the capillary pump are not affected by the average aperture, but the thermal efficiency of the capillary pump is less affected by the evaporator material than by the core material, and decreases with the increase of the thermal conductivity of the core material. The critical pore diameter of capillary pump decreases with the increase of hot end temperature and current, and increases with the increase of porosity, but it is little affected by condenser temperature.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH38;TK124
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉古田;金屬纖維綜述[J];稀有金屬材料與工程;1994年01期
2 湯慧萍,張正德;金屬多孔材料發(fā)展現(xiàn)狀[J];稀有金屬材料與工程;1997年01期
3 黃曉明,劉偉,韓延民;CPL蒸發(fā)器多孔芯傳熱傳質(zhì)特性的新數(shù)學(xué)模型[J];工程熱物理學(xué)報(bào);2004年04期
4 李毅,葉斯奕;熔噴聚丙烯纖維濾芯的特點(diǎn)及工作條件[J];過濾與分離;2001年01期
5 曲偉,伊勇;毛細(xì)抽吸兩相流體回路(CPL)的控溫特性和極限特性研究[J];節(jié)能技術(shù);1998年02期
6 侯相林,高蔭本,陳誦英;微孔無機(jī)膜的制備與改性[J];膜科學(xué)與技術(shù);1996年04期
7 俞平,張加迅,王維城;毛細(xì)抽吸兩相環(huán)系統(tǒng)穩(wěn)定性的實(shí)驗(yàn)研究[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年06期
8 彭峰,黃仲濤;無機(jī)膜的制備技術(shù)進(jìn)展[J];石油化工;1996年09期
9 牟其崢,屠傳經(jīng);毛細(xì)抽吸兩相回路蒸發(fā)器管內(nèi)流動(dòng)的理論分析[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2000年03期
10 牟其崢,屠傳經(jīng);毛細(xì)抽吸兩相回路蒸發(fā)器管內(nèi)傳熱的理論分析[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2000年05期
相關(guān)博士學(xué)位論文 前2條
1 張來福;鈉鉀工質(zhì)堿金屬熱電轉(zhuǎn)換器的基礎(chǔ)研究[D];中國科學(xué)院研究生院(電工研究所);2002年
2 任川;環(huán)路熱管主芯中多過程耦合傳熱現(xiàn)象的理論模型和數(shù)值研究[D];中國科學(xué)技術(shù)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前5條
1 潘賢德;AMTEC熱力性能數(shù)值模擬研究[D];哈爾濱工程大學(xué);2010年
2 張寶嶺;AMTEC多級(jí)毛細(xì)泵數(shù)值模擬研究[D];哈爾濱工程大學(xué);2010年
3 張松;AMTEC通流性能研究[D];哈爾濱工程大學(xué);2011年
4 鄧頓;AMTEC熱損失數(shù)值模擬研究[D];哈爾濱工程大學(xué);2011年
5 馬正軍;毛細(xì)蒸發(fā)器流場(chǎng)數(shù)值模擬研究[D];哈爾濱工程大學(xué);2009年
,本文編號(hào):2238428
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2238428.html