超精密銑削加工工件表面形貌的仿真與紋理控制
[Abstract]:For ultra-precision milling parts, the surface topography will affect the surface roughness evaluation and other surface properties. In this paper, a three-dimensional surface topography simulation algorithm suitable for Ultra-precision milling accuracy and simulation efficiency is established according to the surface topography characteristics of ultra-precision milling parts. The surface topography and composition texture are studied. The influence of machining parameters and initial cutting tool phase angle on the surface topography is obtained. A method to generate specific surface topography is established by planning tool path and machining parameters.
In this paper, under the condition of ultra-precision milling, the formation mechanism of surface topography of ball-end cutter is studied. Based on the method of sweeping point cloud, a three-dimensional surface topography model and simulation algorithm for Ultra-precision milling is established. According to this algorithm, the surface topography and texture are studied and the corresponding texture is controlled. In the process of machining, the 3D surface topography is expressed by discrete point cloud data. According to the information of machining surface and the number of sampling points, the simulation area is divided and the servo containment box is established.
On the basis of this algorithm, the relationship between the feed per turn, tool inclination and the initial cut-in phase angle of the tool and the surface topography is studied by simulation and experiment respectively. Ringing.
By studying the influence of machining parameters and tool initial phase angle on surface topography and texture, a method to control the formation of surface topography and texture is established from two aspects of planning machining parameters and tool path. Finally, the surface topography is realized on the actual workpiece through the process planning, and the goal of controlling the surface topography and texture composition is achieved through the planning of processing strategy.
The simulation and experimental results show that the simulation algorithm can characterize the bi-directional residual height of the workpiece surface and reflect the influence of the cutting tool cutting phase angle on the surface topography.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TG54;TH161.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 M.Weck,S.Fische,彭莉;超精密銑削機(jī)床的開(kāi)發(fā)[J];國(guó)防科技參考;1997年03期
2 K.Sawada,T.Kawai,彭莉;超精密銑削的三維微加工工藝[J];國(guó)防科技參考;1997年03期
3 李圣怡,戴一帆,彭小強(qiáng);超精密加工機(jī)床及其新技術(shù)發(fā)展[J];國(guó)防科技大學(xué)學(xué)報(bào);2000年02期
4 尹自強(qiáng),李圣怡;振動(dòng)影響下金剛石車削表面的形貌仿真[J];國(guó)防科技大學(xué)學(xué)報(bào);2003年01期
5 黎永明,劉建國(guó);超精密機(jī)床的發(fā)展及其關(guān)鍵技術(shù)[J];上海機(jī)械學(xué)院學(xué)報(bào);1994年02期
6 陳東祥;田延嶺;;超精密磨削加工表面形貌建模與仿真方法[J];機(jī)械工程學(xué)報(bào);2010年13期
7 高彤,張衛(wèi)紅,邱克鵬,萬(wàn)敏;周銑加工表面形貌仿真新算法[J];西北工業(yè)大學(xué)學(xué)報(bào);2004年02期
8 袁哲俊,周明,韓向利;超精密機(jī)床的新發(fā)展(上)[J];機(jī)械工藝師;1994年11期
9 袁哲俊,周明,韓向利;超精密機(jī)床的新發(fā)展(下)[J];機(jī)械工藝師;1994年12期
10 李榮彬,張志輝,李建廣;超精密加工的三維表面形貌預(yù)測(cè)[J];中國(guó)機(jī)械工程;2000年08期
相關(guān)博士學(xué)位論文 前5條
1 王淑珍;基于白光干涉超精密表面形貌測(cè)量方法與系統(tǒng)研究[D];華中科技大學(xué);2010年
2 尹自強(qiáng);超精密直線度測(cè)量及表面微觀形貌分析研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2003年
3 李紅濤;介觀尺度材料力學(xué)性能建模及微銑削工藝優(yōu)化研究[D];上海交通大學(xué);2008年
4 鄖建平;基于白光干涉的表面形貌接觸和非接觸兩用測(cè)量系統(tǒng)的研究[D];華中科技大學(xué);2008年
5 周磊;微納米動(dòng)態(tài)切削系統(tǒng)建模及表面形貌的預(yù)測(cè)分析研究[D];哈爾濱工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前6條
1 高彤;銑削加工表面形貌及端銑加工變形仿真研究[D];西北工業(yè)大學(xué);2004年
2 毛瑞生;臺(tái)式五軸聯(lián)動(dòng)超精密數(shù)控銑床的總體設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2006年
3 方文勇;高速數(shù)控加工表面形貌仿真研究[D];山東大學(xué);2007年
4 胡鑫;數(shù)控磨削螺旋刃球頭立銑刀前后刀面的研究[D];湖南大學(xué);2009年
5 魏立峰;光學(xué)零件超精密銑削加工表面形貌預(yù)測(cè)與仿真[D];華中科技大學(xué);2008年
6 陳建超;超精密加工表面粗糙度測(cè)量方法對(duì)比及功率譜密度評(píng)價(jià)[D];哈爾濱工業(yè)大學(xué);2009年
本文編號(hào):2229786
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2229786.html