基于小波變換和神經(jīng)網(wǎng)絡(luò)的旋轉(zhuǎn)機(jī)械故障診斷研究
[Abstract]:Rotating machinery is the key equipment in the fields of aviation, chemical industry and electric power, so it is of great practical significance to study the fault diagnosis of rotating machinery. With the development of vibration detection and signal processing, fault diagnosis based on vibration signal detection, processing and analysis has become an important research direction in the field of fault diagnosis. At the same time, the research of intelligent fault identification and diagnosis technology based on neural network also opens a new way for the research and application of fault diagnosis technology. In this paper, wavelet transform and BP neural network are introduced in detail. On the one hand, the continuous wavelet transform, discrete wavelet transform and orthogonal wavelet packet transform are introduced, and the problem of edge effect is analyzed. On the other hand, the basic principle of BP neural network is introduced. This paper analyzes the learning algorithm and existing problems of standard BP neural network, studies a wavelet neural network based on BP algorithm, and compares the performance of BP neural network with wavelet neural network based on BP algorithm through simulation examples. At the same time, in order to extract the fault features of rotating machinery, the theory and implementation process of extracting fault eigenvalues based on the maximum modulus method of continuous wavelet transform and the optimal orthogonal wavelet packet method are studied. Finally, the common faults of rotating machinery are simulated on a multifunctional rotor test-bed, and the characteristic quantities of common faults of rotor system are extracted by modulus maximum method of continuous wavelet transform and orthogonal wavelet packet transform. Then the eigenvalue is input into the BP neural network for fault diagnosis. The results show that the above method can achieve good results in rotor system fault diagnosis.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邢鈞;高立新;王國(guó)棟;丁芳;張建宇;崔玲麗;;小波包變換在齒輪箱螺栓拉斷故障診斷中的應(yīng)用[J];北京工業(yè)大學(xué)學(xué)報(bào);2007年03期
2 朱永年;趙君愛;;小波—BP神經(jīng)網(wǎng)絡(luò)在旋轉(zhuǎn)機(jī)械故障診斷中的應(yīng)用[J];電子機(jī)械工程;2011年01期
3 朱玲玲;張華中;王正剛;張洪濤;李長(zhǎng)凱;朱水強(qiáng);白楊;;基于小波神經(jīng)網(wǎng)絡(luò)單相斷線故障選線和定位[J];電力系統(tǒng)保護(hù)與控制;2011年04期
4 朱葛俊;;人工魚群算法的汽輪發(fā)電機(jī)故障診斷仿真研究[J];計(jì)算機(jī)仿真;2012年02期
5 林京,屈梁生;基于連續(xù)小波變換的信號(hào)檢測(cè)技術(shù)與故障診斷[J];機(jī)械工程學(xué)報(bào);2000年12期
6 彭志科,何永勇,盧 青,陳真勇,褚福磊;小波局部極大模方法在軸心軌跡辨識(shí)中的應(yīng)用研究[J];機(jī)械工程學(xué)報(bào);2002年07期
7 劉占生;竇唯;王東華;王曉偉;;基于遺傳算法的旋轉(zhuǎn)機(jī)械故障診斷方法融合[J];機(jī)械工程學(xué)報(bào);2007年10期
8 陳哲,馮天瑾,陳剛;一種基于BP算法學(xué)習(xí)的小波神經(jīng)網(wǎng)絡(luò)[J];青島海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年01期
9 石堅(jiān),吳遠(yuǎn)鵬,卓斌,馬勇,許曉鳴;汽車駕駛員主動(dòng)安全性因素的辨識(shí)與分析[J];上海交通大學(xué)學(xué)報(bào);2000年04期
10 閻平凡;智能信息處理與神經(jīng)網(wǎng)絡(luò)研究[J];數(shù)據(jù)采集與處理;2001年01期
本文編號(hào):2215174
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2215174.html