某型裝載機驅(qū)動橋內(nèi)齒輪失效分析及技術改進
本文選題:內(nèi)齒輪 + 失效分析 ; 參考:《廣西工學院》2012年碩士論文
【摘要】:裝載機驅(qū)動橋內(nèi)齒輪是裝載機行走機構中的重要零件之一,主要用來傳遞運動和動力。某型裝載機在服役過程中,驅(qū)動橋內(nèi)齒輪經(jīng)常出現(xiàn)失效的情況,這不但影響了機器的正常使用,而且給用戶和企業(yè)都帶來了一定的經(jīng)濟損失。失效分析是可靠性工程的重要組成部分,是提高產(chǎn)品質(zhì)量的有效途徑之一。通過對失效件進行失效分析,找出產(chǎn)品失效的原因,可以有針對性地提出改進建議和預防措施,,提高產(chǎn)品質(zhì)量,延長其使用壽命,且可增強裝載機服役的安全性和可靠性。因此,對失效的內(nèi)齒輪進行合理的失效分析,具有十分重要的意義。 本文通過對失效件進行收集、統(tǒng)計、歸納,得出內(nèi)齒輪的失效模式為:輪齒根部疲勞斷裂和沿插齒刀退刀槽斷裂。通過實驗手段,借助于硬度計、光譜分析儀、金相顯微鏡、掃描電鏡等試驗設備,對內(nèi)齒輪斷口的宏觀和微觀形貌進行了全面地檢測和分析,同時對內(nèi)齒輪原材料質(zhì)量、熱加工質(zhì)量、機加工質(zhì)量也進行了系統(tǒng)的分析和總結(jié),找出了導致內(nèi)齒輪早期斷裂失效的原因。針對失效的原因,提出了一系列的技術改進措施,通過這些措施可以有效控制內(nèi)齒輪在制造過程中的加工質(zhì)量,防止其發(fā)生早期的失效破壞。 本文利用VDI2737-2005標準對內(nèi)齒圈進行安全系數(shù)的校核,得出了內(nèi)齒圈齒根彎曲疲勞強度安全系數(shù)設計過低的結(jié)論,并利用有限元軟件Ansys對內(nèi)齒圈進行仿真分析,驗證了理論計算結(jié)論的正確性。在此基礎上,通過對內(nèi)齒輪有限元分析得出:內(nèi)齒輪齒根彎曲疲勞安全系數(shù)設計過低,達不到齒輪設計標準中齒根疲勞安全系數(shù)的設計要求,這是導致內(nèi)齒輪從齒根斷裂的主要原因之一。以提高內(nèi)齒輪齒根彎曲疲勞強度安全系數(shù)為主要目標,在保證不影響驅(qū)動橋結(jié)構設計及行星齒輪系統(tǒng)結(jié)構的前提下,選取不同齒根圓角半徑和不同的內(nèi)齒圈壁厚,按照VDI2737-2005標準分別計算,得出了計算齒根彎曲疲勞安全系數(shù)的變化情況,由此提出了內(nèi)齒輪結(jié)構的改進建議,并利用有限元軟件進行進一步的仿真分析,驗證了改進建議下內(nèi)齒輪結(jié)構的合理性。
[Abstract]:The internal gear of the loader drive axle is one of the important parts in the loader walking mechanism, which is mainly used to transfer motion and power. During the service of a certain type of loader, the gear in the drive axle often appears failure, which not only affects the normal use of the machine, but also brings certain economic losses to the users and enterprises. Failure analysis is an important part of reliability engineering and one of the effective ways to improve product quality. Through the failure analysis of the failure parts, the causes of the product failure can be found out, and the improvement suggestions and preventive measures can be put forward in order to improve the product quality, prolong its service life, and enhance the safety and reliability of the loader in service. Therefore, it is of great significance to analyze the failure of internal gears reasonably. In this paper, the failure modes of internal gear are obtained by collecting, statistics and summing up the failure parts. The failure modes are: fatigue fracture at the root of the gear and fracture of the receding groove along the gear shaper. By means of experiment, with the help of hardness meter, spectrum analyzer, metallographic microscope, scanning electron microscope and other test equipment, the macroscopic and microscopic morphology of internal gear fracture was comprehensively detected and analyzed, and the raw material quality of inner gear was also analyzed. The hot machining quality and machining quality are systematically analyzed and summarized to find out the causes of early fracture failure of internal gears. Aiming at the causes of failure, a series of technical improvement measures are put forward, which can effectively control the machining quality of internal gear in the manufacturing process and prevent its early failure. In this paper, VDI2737-2005 standard is used to check the safety factor of inner gear ring, and the conclusion is drawn that the safety factor of internal gear tooth root bending fatigue strength is too low, and the internal gear ring is simulated and analyzed by finite element software Ansys. The correctness of the theoretical calculation results is verified. On this basis, through the finite element analysis of internal gear, it is concluded that the design of bending fatigue safety factor of internal gear tooth root is too low to meet the design requirements of tooth root fatigue safety factor in gear design standard. This is one of the main reasons that cause the internal gear to break from the root of the tooth. In order to improve the safety coefficient of bending fatigue strength of internal gear root, and without affecting the design of drive axle and the structure of planetary gear system, different tooth root radius and different wall thickness of inner gear ring are selected. According to VDI2737-2005 standard, the change of bending fatigue safety factor of tooth root is obtained, and the improvement suggestion of internal gear structure is put forward, and the further simulation analysis is carried out by using finite element software. The rationality of the inner gear structure is verified.
【學位授予單位】:廣西工學院
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TH243
【參考文獻】
相關期刊論文 前10條
1 馮慧華;董彪;尚蛟;魯守衛(wèi);康黎云;;重要參數(shù)對齒輪副承載情況影響規(guī)律研究[J];北京理工大學學報;2011年02期
2 李秀蓮;摩擦力作用下的齒輪齒根彎曲疲勞強度的計算[J];江蘇技術師范學院學報;2002年04期
3 魏延剛,李力行,秦光里;準高速機車牽引齒輪齒根彎曲應力有限元分析[J];大連鐵道學院學報;1995年01期
4 林國成;標準漸開線直齒圓柱齒輪輪齒彎曲應力和齒形系數(shù)的有限元分析[J];哈爾濱工業(yè)大學學報;1985年A6期
5 徐輔仁,沈偉;齒間摩擦對機床增速齒輪傳動中惰輪齒根彎曲疲勞的影響[J];機床與液壓;2001年02期
6 金榮植;22CrMoH鋼齒輪淬火畸變與開裂原因分析及對策[J];金屬熱處理;2005年05期
7 徐步青 ,佟景偉 ,李鴻琦 ,王世斌;移動載荷下齒根應力的時間歷程[J];機械傳動;2001年03期
8 賀靜;夏尊鳳;唐勇;張志強;;漸開線齒輪齒根應力分析[J];機械傳動;2007年02期
9 唐進元,周長江,吳運新;齒輪彎曲強度有限元分析精確建模的探討[J];機械科學與技術;2004年10期
10 林超,李潤方,林騰蛟;圓柱齒輪的齒根應力及其影響因素分析[J];機械科學與技術;1997年03期
相關碩士學位論文 前1條
1 戴進;齒輪齒根動應力分析及其結(jié)構優(yōu)化設計[D];中南大學;2008年
本文編號:2075170
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2075170.html