天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 機械論文 >

基于相空間重構理論的滾動軸承故障診斷研究

發(fā)布時間:2018-06-21 05:04

  本文選題:相空間重構 + 形態(tài)濾波。 參考:《武漢科技大學》2014年碩士論文


【摘要】:滾動軸承是各種旋轉機械中應用最廣泛的一種通用機械部件,它的運行狀態(tài)是否正常往往影響整臺機器的性能。因此,對滾動軸承進行故障診斷具有重要的意義。滾動軸承的故障診斷一般是對非線性時間序列表示的信號進行分析,比如特征提取、狀態(tài)識別。主要研究內容如下: (1)滾動軸承信號往往含有噪聲,為了降低噪聲對特征提取的影響,因此有必要在特征提取之前對信號作降噪處理。本文提出了基于相空間重構技術的主分量分析降噪算法,并用仿真信號和滾動軸承故障實驗數(shù)據(jù)證明了該方法在降噪方面的有效性。 (2)研究了形態(tài)濾波與基于相空間重構技術的主分量分析降噪算法相結合的特征提取算法。信號經(jīng)基于相空間重構的主分量分析降噪方法降噪之后,再用形態(tài)濾波進行特征提取。仿真研究與滾動軸承故障內圈和外圈實驗數(shù)據(jù)的實例分析,證明了該方法的有效性。 (3)研究了局部均值分解(LMD)與基于相空間重構技術的主分量分析降噪算法相結合的特征提取算法。信號基于相空間重構的主分量分析降噪方法降噪之后,再用LMD對其進行分解,選取能量最高的PF1進行包絡譜分析。通過仿真試驗和滾動軸承故障實驗,結果表明該方法能夠有效地提取出信號的故障特征。 (4)研究了多尺度排列熵與支持向量機結合的滾動軸承狀態(tài)識別算法。通過計算各個尺度下滾動軸承四種狀態(tài)信號的排列熵值,選擇合適的尺度來構建特征向量,選取一定數(shù)量的特征向量樣本并運用支持向量機分類器來對其進行分類,結果表明該方法對滾動軸承的正常、內圈故障、外圈故障、滾動體故障這四種狀態(tài)具有很高的識別率。
[Abstract]:Rolling bearing is one of the most widely used universal mechanical parts in all kinds of rotating machinery. Whether its running state is normal or not often affects the performance of the whole machine. Therefore, the rolling bearing fault diagnosis is of great significance. The fault diagnosis of rolling bearings is usually based on the analysis of nonlinear time series signals, such as feature extraction and state recognition. The main research contents are as follows: (1) Rolling bearing signals often contain noise. In order to reduce the influence of noise on feature extraction, it is necessary to do noise reduction before feature extraction. In this paper, a principal component analysis (PCA) denoising algorithm based on phase space reconstruction is proposed. Simulation signals and rolling bearing fault data are used to prove the effectiveness of this method in noise reduction. The feature extraction algorithm based on morphological filtering and principal component analysis (PCA) de-noising algorithm based on phase space reconstruction is studied. After the signal is de-noised by principal component analysis (PCA) based on phase space reconstruction, morphological filtering is used for feature extraction. Simulation study and analysis of the experimental data of the inner ring and outer ring of rolling bearing fault, The validity of this method is proved. (3) the feature extraction algorithm based on local mean decomposition (LMD) and principal component analysis (PCA) denoising algorithm based on phase space reconstruction is studied. After the noise reduction based on the principal component analysis (PCA) method of phase space reconstruction, the PF1 with the highest energy is decomposed by LMD, and the envelope spectrum is analyzed. The simulation and rolling bearing fault experiments show that the method can effectively extract the fault characteristics of the signal. (4) A rolling bearing state recognition algorithm combining multi-scale permutation entropy and support vector machine is studied. By calculating the permutation entropy values of the four state signals of rolling bearing at each scale, choosing the appropriate scale to construct the eigenvector, selecting a certain number of feature vector samples and classifying them by using support vector machine classifier. The results show that the method has a high recognition rate for the normal, inner ring, outer ring and rolling body faults of the rolling bearing.
【學位授予單位】:武漢科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TH133.33;TH165.3

【參考文獻】

相關期刊論文 前10條

1 馬波,魏強,徐春林,江志農;基于Hilbert變換的包絡分析及其在滾動軸承故障診斷中的應用[J];北京化工大學學報(自然科學版);2004年06期

2 陽建宏,徐金梧,楊德斌,呂勇;基于相重構和主流形識別的非線性時間序列降噪方法[J];北京科技大學學報;2005年05期

3 鄒紅星,周小波,李衍達;時頻分析:回溯與前瞻[J];電子學報;2000年09期

4 韓敏;劉云俠;;基于非線性約束的局部投影降噪[J];電子與信息學報;2009年02期

5 王文波;張曉東;汪祥莉;;基于主成分分析的經(jīng)驗模態(tài)分解消噪方法[J];電子學報;2013年07期

6 劉忠寶;王召巴;趙文娟;;流形判別分析和支持向量機的恒星光譜數(shù)據(jù)自動分類方法[J];光譜學與光譜分析;2014年01期

7 徐洪濤;王躍鋼;;基于相空間重構和主分量分析的遙測信號噪聲消除[J];計算機應用;2010年03期

8 陽建宏;徐金梧;楊德斌;黎敏;;基于主流形識別的非線性時間序列降噪方法及其在故障診斷中的應用[J];機械工程學報;2006年08期

9 章立軍;楊德斌;徐金梧;陳志新;;基于數(shù)學形態(tài)濾波的齒輪故障特征提取方法[J];機械工程學報;2007年02期

10 呂勇;李友榮;徐金梧;;加權相空間重構降噪算法及其在設備故障診斷中的應用[J];機械工程學報;2007年07期

,

本文編號:2047350

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2047350.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶f1716***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com