基于盲源分離的風力發(fā)電機主軸承振聲診斷研究
發(fā)布時間:2018-06-14 06:07
本文選題:風力發(fā)電機 + 主軸承; 參考:《沈陽工業(yè)大學》2014年博士論文
【摘要】:近年來,隨著人類社會對能源需求的急速增長和日益嚴重的環(huán)境問題,煤、石油、天然氣等傳統(tǒng)能源所暴露的問題越來越突出。風能作為一種新型可再生能源,以其儲量巨大,價格低廉,環(huán)境污染小的優(yōu)勢越來越受到人們的重視,使得風電裝備也隨之得到了迅速的發(fā)展。近年來隨著我國大力發(fā)展風力發(fā)電事業(yè),風電機組逐步增多,但隨之而來的是風電機組事故頻發(fā),對風力發(fā)電機的狀態(tài)監(jiān)測和故障診斷顯得尤為重要。在風電機組的各組成部件中,主軸承是最為重要,也是最容易出現(xiàn)故障的部件之一。而主軸承的工作狀態(tài)是否正常,將直接影響到整個風電機組的正常運轉。因而對風力機主軸承的狀態(tài)監(jiān)測和故障診斷顯得十分有必要。 目前針對風力機主軸承的診斷方法很多,其中最常用的是振動診斷法和聲發(fā)射診斷法。但由于風力機運行環(huán)境經(jīng)常十分惡劣,在運行過程中,反映其故障狀態(tài)的特征信息經(jīng)常淹沒在噪聲干擾信號之中,有效地提取其故障信息,對風力機主軸承的監(jiān)測和診斷十分必要。國內外很多學者在這方面做了大量工作,如將專家系統(tǒng)、模糊系統(tǒng)、神經(jīng)網(wǎng)絡、小波變換、Hilbert-Huang變換、Wigner分布、支持向量機等方法應用于風力機主軸承的診斷之中,取得了很多有價值的研究成果,但同時也存在一些問題。鑒于此,本文采用盲源分離理論來探索風力機主軸承振動和聲發(fā)射故障信號的提取方法,并做了如下工作: 第一,介紹了風電技術的發(fā)展狀況,闡述了課題的研究背景、研究的目的和意義,論述了風力機主軸承振動和聲發(fā)射診斷的國內外研究現(xiàn)狀,并指出本文的思路和采用的研究方法。 第二,探討了盲源分離的基本理論和盲源分離算法,主要闡述了FastICA算法和JADE算法的計算過程,并指出這些算法存在的不足之處。針對盲源分離算法存在的不足,探討了采用粒子群優(yōu)化算法對盲源分離過程進行的優(yōu)化,并比較了各分離算法的性能。 第三,建立了基于盲源分離的風力機主軸承振動診斷系統(tǒng)。首先探討了振動信號的提取方法,,認為包絡分析對振動信號的提取較為有效,然后分別對轉子試驗臺、風力發(fā)電機試驗臺和實際風力發(fā)電機主軸承的振動信號進行了分離,以實現(xiàn)振動故障信號的特征提取。 第四,建立了基于盲源分離的風力機主軸承聲發(fā)射診斷系統(tǒng)。首先探討了聲發(fā)射信號的提取方法,認為小波分析對聲發(fā)射信號的提取較為有效,然后對風力發(fā)電機主軸承的聲發(fā)射信號進行了分離,以實現(xiàn)聲發(fā)射故障信號的特征提取。 第五,根據(jù)提取的風力機主軸承信號的特點,采用集成小波神經(jīng)網(wǎng)絡對風力機主軸承進行故障診斷。針對振動信號和聲發(fā)射信號的特點分別設計子神經(jīng)網(wǎng)絡,并采用決策融合神經(jīng)網(wǎng)絡進行診斷信息融合,提高了診斷效率。并對診斷算法進行了軟件實現(xiàn),增強了診斷方法的實用性。 第六,總結本文的主要結論并對相關的研究技術進行了展望。
[Abstract]:In recent years , with the rapid growth of energy demand and the growing environmental problems of human society , the problems of coal , oil , natural gas and other traditional energy sources have become more and more prominent . As a new type of renewable energy , the advantages of large reserves , low price and less environmental pollution have been paid more and more attention .
Many scholars have done a lot of work in this field , such as expert system , fuzzy system , neural network , wavelet transform , Hilbert - Huang transform , Wigner distribution , support vector machine and so on .
Firstly , the development status of wind power technology is introduced , the research background , the purpose and significance of the research are expounded , the research status of the vibration and acoustic emission diagnosis of the main bearing of the wind turbine is discussed , and the thinking and the research method adopted in this paper are pointed out .
Secondly , the basic theory of blind source separation and the blind source separation algorithm are discussed . The calculation process of FastICA algorithm and JADE algorithm is mainly discussed , and the shortcomings of these algorithms are pointed out . In view of the shortage of blind source separation algorithm , the optimization of blind source separation process using particle swarm optimization algorithm is discussed , and the performance of each separation algorithm is compared .
Third , the vibration diagnosis system of the main bearing of the wind turbine based on the blind source separation is established . Firstly , the extraction method of the vibration signal is discussed . It is concluded that the envelope analysis is effective to the extraction of the vibration signal , and then the vibration signals of the rotor test stand , the test stand of the wind generator and the main bearing of the actual wind power generator are separated respectively to realize the feature extraction of the vibration fault signal .
Fourthly , the acoustic emission diagnosis system based on blind source separation is established . Firstly , the extraction method of the acoustic emission signal is discussed , and the wavelet analysis is considered to be effective for the extraction of the acoustic emission signal , and then the acoustic emission signal of the main bearing of the wind turbine generator is separated to realize the feature extraction of the acoustic emission fault signal .
Fifth , according to the characteristics of the extracted wind turbine main bearing signal , the integrated wavelet neural network is adopted to diagnose the main bearing of the wind turbine . The sub - neural network is designed according to the characteristics of the vibration signal and the acoustic emission signal respectively , and the decision fusion neural network is adopted to carry out diagnosis information fusion , so that the diagnosis efficiency is improved . The diagnosis algorithm is implemented in software , and the practicability of the diagnosis method is enhanced .
Sixth , summarizes the main conclusions of this paper and looks forward to the relevant research techniques .
【學位授予單位】:沈陽工業(yè)大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM315;TH165.3
【參考文獻】
相關期刊論文 前10條
1 程明;張運乾;張建忠;;風力發(fā)電機發(fā)展現(xiàn)狀及研究進展[J];電力科學與技術學報;2009年03期
2 理華,徐春廣,肖定國,黃卉,鄭軍,季皖東,郭浩;滾動軸承聲發(fā)射檢測技術[J];軸承;2002年07期
3 趙一帆;齊明俠;趙繼紅;趙煥娟;;基于聲發(fā)射技術的滾動軸承故障檢測[J];軸承;2010年04期
4 羅躍綱,陳長征,曾海泉,聞邦椿;基于信息融合的集成小波神經(jīng)網(wǎng)絡故障診斷[J];東北大學學報;2002年08期
5 劉琚,聶開寶,李道真,何振亞;基于遞歸神經(jīng)網(wǎng)絡的信息理論盲源分離準則[J];電路與系統(tǒng)學報;2001年01期
6 汪軍,何振亞;瞬時混疊信號盲分離[J];電子學報;1997年04期
7 汪軍,何振亞;卷積混疊信號盲分離[J];電子學報;1997年07期
8 張賢達,保錚;盲信號分離[J];電子學報;2001年S1期
9 徐先峰;馮大政;;一種快速的解盲源分離新算法[J];電子學報;2010年12期
10 成謝鋒;馬勇;張學軍;劉琚;張少白;;一種不用先驗知識的單路混合信號的盲源分離新方法[J];電子學報;2011年10期
本文編號:2016393
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2016393.html
教材專著