離心式心臟泵流場(chǎng)數(shù)值計(jì)算與分析
本文選題:數(shù)值模擬 + CFD ; 參考:《蘭州理工大學(xué)》2011年碩士論文
【摘要】:CFD技術(shù)是一種強(qiáng)大的數(shù)值模擬工具,本課題利用CFD軟件對(duì)采用一元理論的方法所設(shè)計(jì)的無回流區(qū)和有回流區(qū)兩種離心式心臟泵模型進(jìn)行數(shù)值模擬,較好地分析和認(rèn)識(shí)了人工心臟泵葉輪內(nèi)部流場(chǎng)的分布,揭示了葉輪內(nèi)部流動(dòng)的特殊規(guī)律和流動(dòng)機(jī)理。通過數(shù)值模擬得到了心臟泵流道內(nèi)的切應(yīng)力分布云圖,速度分布云圖以及壓強(qiáng)分布云圖,分析對(duì)比了兩種模型對(duì)血栓和溶血的影響,為人工心臟泵在提高抗血栓和溶血性能方面打下良好的基礎(chǔ)。為此,本課題進(jìn)行了如下研究: 1.通過綜合分析國內(nèi)人工心臟泵的研究現(xiàn)狀,以N-S方程為基礎(chǔ),闡述了CFD的基本理論,分析了CFD模擬過程中所用到的模型及數(shù)值計(jì)算方法。 2.采用一元理論的設(shè)計(jì)方法對(duì)離心式心臟泵進(jìn)行了水力設(shè)計(jì),利用Pro/E軟件繪制水力設(shè)計(jì)的平面圖,并且建立了三維實(shí)體模型。將三維實(shí)體模型導(dǎo)入網(wǎng)格劃分軟件ICEM中生成流動(dòng)區(qū)域,再利用四面體非結(jié)構(gòu)化網(wǎng)格對(duì)流動(dòng)區(qū)域進(jìn)行網(wǎng)格劃分,并簡單闡述了網(wǎng)格對(duì)計(jì)算解的影響。 3.將得到的msh文件導(dǎo)入流體數(shù)值仿真軟件FLUENT中,設(shè)置流體的參數(shù)和邊界條件,采用RNG k-ε湍流模型和壓力耦合的SIMPLEC算法求解方程,最終實(shí)現(xiàn)了人工心臟泵流場(chǎng)的數(shù)值模擬。 4.在相同的邊界條件下,得到的模擬結(jié)果顯示:心臟泵內(nèi)的絕對(duì)速度場(chǎng)與壓力場(chǎng)的分布與理論研究相一致,并且有回流區(qū)模型的絕對(duì)速度場(chǎng)與壓力場(chǎng)的分布情況要好于無回流區(qū)模型; 5.兩種心臟泵的葉片工作面中部,均出現(xiàn)流動(dòng)渦流現(xiàn)象,但是有回流區(qū)模型的湍流區(qū)域小于無回流區(qū)模型的湍流區(qū)域,也就是有回流區(qū)心臟泵模型的流動(dòng)效果要好一些。 6.從兩種心臟泵的切應(yīng)力分布圖可以看出,有回流區(qū)離心式心臟泵內(nèi)部的最大切應(yīng)力要比無回流區(qū)離心式心臟泵小,且切應(yīng)力高于產(chǎn)生溶血的臨界切應(yīng)力(150Pa)的區(qū)域要比無回流區(qū)離心式心臟泵的區(qū)域小。因此對(duì)血細(xì)胞的破壞更小,進(jìn)一步說明有回流區(qū)離心式心臟泵模型更符合血液動(dòng)力學(xué)的要求。
[Abstract]:CFD technology is a powerful numerical simulation tool. In this paper, we use CFD software to simulate two kinds of centrifugal heart pump models without reflux region and reflux zone, which are designed by using the method of univariate theory. The distribution of flow field in the impeller of artificial heart pump is analyzed and understood, and the special law and mechanism of flow inside the impeller are revealed. By numerical simulation, the distribution of shear stress, velocity and pressure in the flow channel of the heart pump were obtained. The effects of the two models on thrombus and hemolysis were analyzed and compared. For artificial heart pump in improving the anti-thrombotic and hemolytic performance lay a good foundation. For this reason, this subject has carried on the following research: 1. Based on N-S equation, the basic theory of CFD is expounded, and the models and numerical methods used in CFD simulation are analyzed. 2. The hydraulic design of centrifugal heart pump is carried out by using the method of univariate theory. The plane diagram of hydraulic design is drawn by using Prop / E software, and the three-dimensional solid model is established. The 3D solid model is introduced into the meshing software ICEM to generate the flow area, and then the tetrahedron unstructured mesh is used to mesh the flow area, and the influence of the mesh on the computational solution is briefly described. The msh file is imported into the fluid numerical simulation software fluent, the parameters and boundary conditions of the fluid are set up, and the equations are solved by using the RNG k- 蔚 turbulence model and the coupled SIMPLEC algorithm. Finally, the numerical simulation of flow field of artificial heart pump is realized. 4. Under the same boundary condition, the simulation results show that the distribution of the absolute velocity field and pressure field in the heart pump is consistent with the theoretical study. And the distribution of the absolute velocity field and pressure field of the model with reflux region is better than that of the model without reflux region. In the middle of the blade face of the two kinds of heart pumps, the phenomenon of flow eddy current appears, but the turbulent region with reflux zone model is smaller than that with no return zone model. The flow effect of the heart pump model with reflux zone is better. 6. 6. It can be seen from the shear stress distribution of the two kinds of pump that the maximum shear stress in the centrifugal heart pump with reflux zone is smaller than that in the non-reflux zone centrifugal heart pump. The region with shear stress higher than the critical shear stress of hemolysis (150 Pa) is smaller than that of centrifugal pump without reflux. Therefore, the damage to blood cells is less, which further indicates that the model of centrifugal heart pump with reflux zone meets the requirement of hemodynamics.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH311
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李家春;;LARGE EDDY SIMULATION OF COMPLEX TURBULENT FLOWS:PHYSICAL ASPECTS AND RESEARCH TRENDS[J];Acta Mechanica Sinica;2001年04期
2 錢坤喜;人工心臟電動(dòng)葉輪血泵的新進(jìn)展[J];北京生物醫(yī)學(xué)工程;1988年Z1期
3 姜以嶺,藺嫦燕;左心輔助裝置中血泵的發(fā)展現(xiàn)狀[J];北京生物醫(yī)學(xué)工程;2000年01期
4 鄒正平,徐力平;葉輪機(jī)三維非定常流動(dòng)數(shù)值模擬的研究[J];航空學(xué)報(bào);2001年01期
5 熊鰲魁,詹德新;不可壓流場(chǎng)數(shù)值模擬方法綜述[J];武漢交通科技大學(xué)學(xué)報(bào);1999年05期
6 劉厚林,關(guān)醒凡,施衛(wèi)東,楊敬江;我國泵CAD技術(shù)的特點(diǎn)及發(fā)展[J];流體機(jī)械;2002年03期
7 李家春;現(xiàn)代流體力學(xué)發(fā)展的回顧與展望[J];力學(xué)進(jìn)展;1995年04期
8 趙斌娟,王澤;離心泵葉輪內(nèi)流數(shù)值模擬的現(xiàn)狀和展望[J];農(nóng)機(jī)化研究;2002年03期
9 袁建平,袁壽其,何志霞,黃良勇,劉厚林;離心泵內(nèi)部流動(dòng)測(cè)試研究進(jìn)展[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2004年04期
10 李文廣;大出口角離心泵葉輪內(nèi)部清水流動(dòng)測(cè)量[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);1999年02期
相關(guān)碩士學(xué)位論文 前4條
1 王芳群;應(yīng)用CFD技術(shù)探明葉輪設(shè)計(jì)對(duì)人工心臟血泵內(nèi)流場(chǎng)及切應(yīng)力分布的影響[D];江蘇大學(xué);2003年
2 王廣義;錐形螺旋葉輪血泵流場(chǎng)數(shù)值計(jì)算與分析[D];燕山大學(xué);2007年
3 錢道光;基于CFD的軸流式血泵內(nèi)流動(dòng)特性分析[D];武漢科技大學(xué);2009年
4 宋懷德;旋噴泵內(nèi)部流場(chǎng)數(shù)值分析及其集流管的設(shè)計(jì)[D];蘭州理工大學(xué);2010年
,本文編號(hào):2010644
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2010644.html