可逆式對(duì)旋軸流泵的模型設(shè)計(jì)與數(shù)值分析
本文選題:可逆 + 對(duì)旋; 參考:《華中科技大學(xué)》2014年碩士論文
【摘要】:與傳統(tǒng)單級(jí)軸流泵相比,對(duì)旋軸流泵是將傳統(tǒng)軸流泵的后置靜葉用后置動(dòng)葉代替,前后置葉輪反向旋轉(zhuǎn)而得到的軸流泵。后置葉輪不僅可以回收前置葉輪出口的動(dòng)能,同時(shí)給液流二次加功,因而對(duì)旋軸流泵具有體積小、揚(yáng)程高、空化性能好等特點(diǎn)。本文以高效可逆式對(duì)旋軸流泵為研制目標(biāo),結(jié)合模型設(shè)計(jì)、定常及非定常數(shù)值模擬方法,探討對(duì)旋軸流泵應(yīng)用于雙向運(yùn)行場(chǎng)合的可行性。 模型設(shè)計(jì)采用軸流泵線性環(huán)量修正和流線法相結(jié)合,以分析葉輪進(jìn)出口的速度三角形為研究基礎(chǔ),提出可逆式對(duì)旋軸流泵葉輪的設(shè)計(jì)思路,并應(yīng)用MATLAB7.0對(duì)設(shè)計(jì)過(guò)程進(jìn)行參數(shù)化。 基于FLUENT軟件,就可逆式對(duì)旋軸流泵后置葉輪進(jìn)口絕對(duì)速度的圓周分量、級(jí)間的負(fù)荷分配方案進(jìn)行分析;為提高可逆對(duì)旋軸流泵反向運(yùn)行的性能,通過(guò)對(duì)NACA0009翼型進(jìn)行修正,得到橢圓型的雙對(duì)稱(chēng)翼型NACA0009-ellipse,并給出這種翼型在有拱度和無(wú)拱度下的性能對(duì)比分析結(jié)果;為研究?jī)杉?jí)葉輪間的匹配問(wèn)題,初步分析了軸向間隙、徑向間隙對(duì)可逆式對(duì)旋軸流泵的影響。結(jié)果表明:聯(lián)合假設(shè)條件下,泵內(nèi)流態(tài)較好,但泵的有效工作范圍變窄;級(jí)間負(fù)荷分配對(duì)泵總體特性影響較小,增大負(fù)荷比可以改善后置葉輪反向運(yùn)行時(shí)的空化性能;反向運(yùn)行時(shí),葉輪按無(wú)拱度條件下的雙對(duì)稱(chēng)翼型進(jìn)行加厚,可以有效減小葉片吸力面的回流損失,提高泵反向運(yùn)行性能;軸向間隙取后置葉輪葉中弦長(zhǎng)的80%獲得的水力性能相對(duì)較好;前后置葉輪葉頂泄漏渦的成因與傳播特性基本相似,都是在翼型頭部正背面大壓力差的作用下形成,在葉片卷吸作用下,往葉片旋轉(zhuǎn)的反方向移動(dòng),渦的強(qiáng)度隨之減弱,另外,后置葉輪的葉頂泄漏渦受前置葉輪的影響有往主流方向移動(dòng)的趨勢(shì)。 結(jié)合時(shí)間推進(jìn)法及滑移網(wǎng)格技術(shù),,在定常計(jì)算的基礎(chǔ)上完成可逆式對(duì)旋軸流泵全流道三維非定常計(jì)算及動(dòng)態(tài)性能預(yù)測(cè),給出設(shè)計(jì)流量工況及小流量工況下的內(nèi)流場(chǎng),并對(duì)級(jí)間瞬態(tài)干涉進(jìn)行分析。結(jié)果表明:動(dòng)/動(dòng)干涉面及對(duì)旋基元級(jí)上的渦量和壓力分布具有明顯的周期性,可直觀地反映動(dòng)/動(dòng)葉柵的干涉過(guò)程。
[Abstract]:Compared with the traditional single-stage axial flow pump, the counter-rotating axial flow pump is an axial flow pump, which is obtained by replacing the rear static vane of the traditional axial flow pump with the rear moving vane and rotating the front and front impeller in reverse direction. The rear impeller can not only recover the kinetic energy from the outlet of the front impeller, but also add secondary power to the liquid flow, so the counterrotating axial flow pump has the characteristics of small volume, high lift and good cavitation performance. In this paper, the feasibility of applying counterrotating axial flow pump to bidirectional operation is discussed with the aim of developing high efficiency reversible counter-rotating axial flow pump, combined with model design, steady and unsteady numerical simulation method. The design of the model is based on the linear loop correction of axial flow pump and the streamline method. Based on the analysis of the velocity triangle of impeller inlet and outlet, the design idea of reversible counterrotating axial flow pump impeller is put forward, and the design process is parameterized by MATLAB7.0. Based on FLUENT software, this paper analyzes the circumferential component of the absolute velocity at the inlet of the rear impeller of a reversible counter-rotating axial flow pump and the load distribution scheme between stages. In order to improve the reverse operation performance of the reversible counter-rotating axial flow pump, the airfoil of NACA0009 is modified. The elliptical double symmetric airfoil NACA0009-ellipse is obtained, and the results of comparative analysis of the performance of this airfoil under the condition of arch and no arch are given. In order to study the matching problem between two stage impellers, the axial clearance is preliminarily analyzed. Effect of radial clearance on reversible counterrotating axial flow pump. The results show that the internal flow state of the pump is better, but the effective working range of the pump becomes narrower under the combined assumption, and the effect of inter-stage load distribution on the overall performance of the pump is small, and the cavitation performance of the rear impeller can be improved by increasing the load ratio. When the impeller is thickened under the condition of no arch, the backflow loss of the suction surface of the blade can be reduced effectively, and the reverse operation performance of the pump can be improved. The hydraulic performance obtained by taking 80% of the chord length in the blade of the rear impeller with axial clearance is relatively good, and the cause of the leakage vortex at the top of the front and rear impeller is basically similar to the propagation characteristic, which is formed under the action of the large pressure difference on the back of the head of the airfoil. Under the action of blade entrainment, the vortex intensity decreases as the blade rotates in the opposite direction. In addition, the tip leakage vortex of the rear impeller tends to move to the mainstream direction under the influence of the front impeller. Combined with time advance method and sliding grid technology, the three-dimensional unsteady calculation and dynamic performance prediction of the full channel of reversible counter-rotating axial flow pump are completed on the basis of steady calculation, and the internal flow field under the condition of design flow and small flow rate is given. The interstage transient interference is analyzed. The results show that the vorticity and pressure distribution on the dynamic / dynamic interference surface and the counterrotating element level are obviously periodic, which can directly reflect the interference process of the moving / moving cascade.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TH312
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鐘駿薇;李意民;吳倩;;對(duì)旋風(fēng)機(jī)的數(shù)值模擬和優(yōu)化[J];風(fēng)機(jī)技術(shù);2011年02期
2 陳魚(yú);王曉林;喬慧麗;;對(duì)旋風(fēng)機(jī)串聯(lián)特性的數(shù)值模擬[J];風(fēng)機(jī)技術(shù);2010年04期
3 蔣志軍;周拜豪;;復(fù)合彎掠定制葉型技術(shù)在對(duì)旋風(fēng)機(jī)設(shè)計(jì)中的應(yīng)用[J];燃?xì)鉁u輪試驗(yàn)與研究;2012年01期
4 雷蕾;李意民;曹雷;;對(duì)旋風(fēng)機(jī)流場(chǎng)分析與數(shù)值模擬研究[J];礦山機(jī)械;2010年23期
5 張黎燕;;煤礦對(duì)旋風(fēng)機(jī)輪轂強(qiáng)度校核與模態(tài)分析[J];煤礦機(jī)械;2012年08期
6 孫婉;李意民;雷蕾;曹雷;;對(duì)旋風(fēng)機(jī)內(nèi)流分析與數(shù)值模擬研究[J];礦山機(jī)械;2010年19期
7 成建斌;;對(duì)旋軸流式風(fēng)機(jī)的選型設(shè)計(jì)及安裝調(diào)試[J];機(jī)械工程與自動(dòng)化;2005年06期
8 王軍;肖朋;;變工況下對(duì)旋風(fēng)機(jī)的數(shù)值模擬實(shí)驗(yàn)[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年09期
9 陳慶光;房菲;張永超;賈祥省;;對(duì)旋風(fēng)機(jī)級(jí)間流場(chǎng)渦量和噪聲分布規(guī)律的分析[J];噪聲與振動(dòng)控制;2012年01期
10 李志平,李秋實(shí),陸亞鈞;從非定常效應(yīng)看對(duì)旋風(fēng)扇/壓氣機(jī)的工程實(shí)現(xiàn)[J];工程熱物理學(xué)報(bào);2002年02期
相關(guān)會(huì)議論文 前4條
1 楊華運(yùn);;對(duì)旋風(fēng)機(jī)葉輪軸向間隙對(duì)其性能的影響研究[A];第五屆全國(guó)煤炭工業(yè)生產(chǎn)一線青年技術(shù)創(chuàng)新文集[C];2010年
2 盛世明;馮繼東;;對(duì)旋軸流防爆主通風(fēng)機(jī)電機(jī)引接線結(jié)構(gòu)改進(jìn)的幾點(diǎn)看法[A];贛閩皖蘇湘五省煤炭學(xué)會(huì)聯(lián)合學(xué)術(shù)交流會(huì)論文集[C];2004年
3 賈祥正;王維斌;;對(duì)旋式風(fēng)機(jī)流場(chǎng)的定常數(shù)值模擬[A];煤礦安全、高效、潔凈開(kāi)采——機(jī)電一體化新技術(shù)學(xué)術(shù)會(huì)議論文集[C];2009年
4 耿帥帥;;變頻器在礦用對(duì)旋通風(fēng)機(jī)中的應(yīng)用分析[A];第22屆全國(guó)煤礦自動(dòng)化與信息化學(xué)術(shù)會(huì)議暨第4屆中國(guó)煤礦信息化與自動(dòng)化高層論壇論文集[C];2012年
相關(guān)博士學(xué)位論文 前1條
1 許劍;高效對(duì)旋風(fēng)機(jī)的流場(chǎng)特性研究與設(shè)計(jì)優(yōu)化[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2011年
相關(guān)碩士學(xué)位論文 前9條
1 李婷;掘進(jìn)工作面對(duì)旋通風(fēng)機(jī)運(yùn)行特性研究[D];太原理工大學(xué);2016年
2 李勝;礦用對(duì)旋風(fēng)機(jī)兩級(jí)葉輪轉(zhuǎn)速匹配性能研究[D];太原理工大學(xué);2016年
3 王俊;可逆式對(duì)旋軸流泵的模型設(shè)計(jì)與數(shù)值分析[D];華中科技大學(xué);2014年
4 韓宇;兩級(jí)轉(zhuǎn)速匹配下的對(duì)旋風(fēng)機(jī)性能研究[D];哈爾濱理工大學(xué);2015年
5 和海波;對(duì)旋風(fēng)機(jī)變工況下性能分析與兩級(jí)電機(jī)功率匹配研究[D];哈爾濱理工大學(xué);2014年
6 王淼;基于CFD的對(duì)旋風(fēng)機(jī)數(shù)值計(jì)算分析[D];哈爾濱理工大學(xué);2013年
7 凌志軍;對(duì)旋風(fēng)機(jī)流場(chǎng)實(shí)驗(yàn)研究及數(shù)值模擬[D];安徽理工大學(xué);2009年
8 張澤琦;對(duì)旋風(fēng)機(jī)變轉(zhuǎn)速下葉片空氣動(dòng)力特性研究[D];哈爾濱理工大學(xué);2015年
9 賀衛(wèi)晉;非穩(wěn)定工況下對(duì)旋風(fēng)機(jī)噪聲數(shù)值模擬及實(shí)驗(yàn)研究[D];中國(guó)礦業(yè)大學(xué);2014年
本文編號(hào):1938270
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1938270.html