錐—行星立磨減速機(jī)非線性振動(dòng)特性研究
發(fā)布時(shí)間:2018-05-22 15:09
本文選題:立磨減速機(jī) + 非線性振動(dòng)。 參考:《重慶大學(xué)》2011年碩士論文
【摘要】:立磨減速機(jī)是大型立式磨機(jī)的核心部件,其齒輪傳動(dòng)系統(tǒng)通常由錐齒輪傳動(dòng)、平行軸齒輪傳動(dòng)、行星齒輪傳動(dòng)等多種傳動(dòng)形式組成。由于立磨減速機(jī)傳動(dòng)形式的復(fù)雜性,在運(yùn)轉(zhuǎn)過(guò)程中各級(jí)齒輪副所產(chǎn)生的內(nèi)部激勵(lì)以及外部激勵(lì)相互耦合作用,使整個(gè)裝置的振動(dòng)特性非常復(fù)雜。因此,開(kāi)展立磨減速機(jī)齒輪傳動(dòng)系統(tǒng)的動(dòng)力學(xué)研究,對(duì)解決其減振降噪問(wèn)題具有重要理論意義和工程應(yīng)用價(jià)值。 論文課題來(lái)源于國(guó)家科技支撐計(jì)劃項(xiàng)目。綜合應(yīng)用齒輪嚙合原理、非線性振動(dòng)理論以及動(dòng)力接觸有限元仿真方法,對(duì)錐-行星立磨減速機(jī)非線性振動(dòng)特性進(jìn)行研究。本文的主要研究工作如下: ①采用集中參數(shù)法建立了考慮多對(duì)齒輪副時(shí)變嚙合剛度、嚙合阻尼、輪齒綜合誤差、齒側(cè)間隙和外部激勵(lì)的立磨減速機(jī)齒輪傳動(dòng)系統(tǒng)17自由度非線性動(dòng)力學(xué)模型,并推導(dǎo)了模型的量綱一化方程。 ②利用4-5階變步長(zhǎng)Runge-Kutta數(shù)值積分方法對(duì)量綱一化微分方程組進(jìn)行數(shù)值仿真;诜蔷性振動(dòng)理論,分析其時(shí)間歷程曲線、頻譜圖、相軌跡、龐加萊截面、分岔圖,研究了系統(tǒng)參數(shù)對(duì)非線性動(dòng)力學(xué)特性的影響規(guī)律。 ③采用ANSYS/LS-DYNA軟件,對(duì)弧齒錐齒輪進(jìn)行動(dòng)力接觸有限元分析,得出不同嚙合位置輪齒的嚙合剛度、嚙合沖擊及動(dòng)態(tài)應(yīng)力,并將剛度激勵(lì)、誤差激勵(lì)和沖擊激勵(lì)合成為齒輪副內(nèi)部動(dòng)態(tài)激勵(lì)。 ④借助ANSYS的瞬態(tài)響應(yīng)有限元分析模塊,采用直接積分法計(jì)算立磨減速機(jī)的動(dòng)態(tài)響應(yīng),并將APDL語(yǔ)言編程提取的節(jié)點(diǎn)動(dòng)態(tài)響應(yīng)進(jìn)行數(shù)值特征分析。分析表明,有限元法與集中參數(shù)法計(jì)算結(jié)果吻合良好。
[Abstract]:Vertical mill reducer is the core part of large vertical mill. Its gear transmission system is usually composed of bevel gear drive, parallel shaft gear transmission, planetary gear transmission and so on. Due to the complexity of the transmission form of vertical mill reducer, the internal and external excitations produced by gear pairs at all levels are coupled in the process of operation, which makes the vibration characteristics of the whole device very complex. Therefore, the research on the dynamics of gear transmission system of vertical mill reducer has important theoretical significance and engineering application value to solve the problem of vibration and noise reduction. The thesis comes from the National Science and Technology support Program. Based on gear meshing principle, nonlinear vibration theory and finite element simulation method of dynamic contact, the nonlinear vibration characteristics of bevel and planetary vertical mill reducer are studied. The main work of this paper is as follows: In this paper, a 17 DOF nonlinear dynamic model of gear transmission system of vertical mill reducer is established by means of the lumped parameter method, which takes into account the time-varying meshing stiffness, meshing damping, gear tooth synthesis error, tooth side clearance and external excitation of several pairs of gear pairs. The dimensionalization equation of the model is derived. 2 numerical simulation of dimensionally homogeneous differential equations is carried out by using 4-5 order variable step Runge-Kutta numerical integration method. Based on the theory of nonlinear vibration, the time history curve, spectrum diagram, phase locus, Poincare cross section and bifurcation diagram are analyzed, and the influence of system parameters on nonlinear dynamic characteristics is studied. Using ANSYS/LS-DYNA software, the dynamic contact finite element analysis of spiral bevel gear is carried out, and the meshing stiffness, meshing impact and dynamic stress of gear teeth with different meshing positions are obtained, and the stiffness is excited. The combination of error excitation and shock excitation is internal dynamic excitation of gear pair. With the help of the transient response finite element analysis module of ANSYS, the direct integration method is used to calculate the dynamic response of the vertical mill reducer, and the node dynamic response extracted by APDL language is analyzed. The analysis shows that the finite element method is in good agreement with the lumped parameter method.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH132.46
【引證文獻(xiàn)】
相關(guān)期刊論文 前1條
1 趙陽(yáng);穆塔里夫·阿赫邁德;孫書(shū)斗;何永明;;風(fēng)力機(jī)增速齒輪箱行星斜齒輪系非線性動(dòng)態(tài)分析[J];可再生能源;2013年08期
,本文編號(hào):1922579
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1922579.html
最近更新
教材專著