機械故障特征信息提取的ICA信息融合方法
發(fā)布時間:2018-05-11 00:32
本文選題:獨立成分分析 + 信息融合; 參考:《機械科學與技術》2016年07期
【摘要】:峭度和負熵是盲信號獨立性的兩個自然測度,可以被用來捕捉機械振動信號信息的動態(tài)變化特征,并提取機械設備的故障特征信息。峭度和負熵是從兩個不同的角度和層面闡釋機械設備的故障特征信息,信息量是互補的。若將峭度信息和負熵信息融合,則必然能夠更全面、更深刻地來表征機械設備的狀態(tài)。因此引入信息融合的思想,提出基于ICA信息融合的機械故障特征信息提取方法,綜合峭度和負熵信息來提取機械設備的故障特征信息。液壓齒輪泵模式識別試驗表明,該方法可以應用于機械設備的故障特征信息提取。
[Abstract]:Kurtosis and negative entropy are two natural measures of blind signal independence, which can be used to capture the dynamic characteristics of mechanical vibration signal information and to extract the fault feature information of mechanical equipment. Kurtosis and negative entropy explain the fault feature information of mechanical equipment from two different angles and levels, and the amount of information is complementary. If the kurtosis information and the negative entropy information are fused, the state of mechanical equipment can be represented more comprehensively and profoundly. This paper introduces the idea of information fusion and proposes a method of extracting mechanical fault feature information based on ICA information fusion which combines kurtosis and negative entropy information to extract fault feature information of mechanical equipment. The pattern recognition test of hydraulic gear pump shows that this method can be used to extract fault feature information of mechanical equipment.
【作者單位】: 武警警官學院;第二炮兵工程大學;武警工程大學;
【基金】:國家自然科學基金項目(61132008)資助
【分類號】:TP202;TH17
【相似文獻】
相關會議論文 前1條
1 張耀輝;許軍;張仕新;;基于最大故障特征信息量準則的機械系統(tǒng)診斷樹的建立與優(yōu)化[A];設備監(jiān)測與診斷技術及其應用——第十二屆全國設備監(jiān)測與診斷學術會議論文集[C];2005年
,本文編號:1871631
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1871631.html
教材專著