重型自行式平臺(tái)臂架結(jié)構(gòu)動(dòng)靜態(tài)分析及優(yōu)化
本文選題:箱型伸縮臂 + 有限元分析; 參考:《哈爾濱工業(yè)大學(xué)》2011年碩士論文
【摘要】:重型自行式平臺(tái)臂架節(jié)數(shù)多、鉸點(diǎn)多、工作位置多,受力復(fù)雜,承受彎扭剪復(fù)合載荷,并且工作環(huán)境多為高風(fēng)載,高沙塵工地。本課題來源于國家十一五科技支撐計(jì)劃項(xiàng)目《無腳手架安裝作業(yè)裝備技術(shù)研究與產(chǎn)業(yè)化開發(fā)》(編號(hào)2008BAJ09B01-3)。該重型自行式平臺(tái)具有大臂長,高負(fù)載,低變形等特點(diǎn),本文對其結(jié)構(gòu)進(jìn)行了強(qiáng)度、剛度、穩(wěn)定性及模態(tài)等方面的研究,并對其結(jié)構(gòu)進(jìn)行優(yōu)化,降低其自重。 在對伸縮臂的伸縮原理簡要說明的基礎(chǔ)上,本文對起升角度為0°、66°、80°三種危險(xiǎn)工況條件下的伸縮臂進(jìn)行強(qiáng)度、剛度等靜力學(xué)分析。并且針對伸縮臂軸向力承載的兩種不同假設(shè),分別建立有限元模型進(jìn)行非線性靜力學(xué)分析,確定了伸縮臂在工作中危險(xiǎn)截面以及應(yīng)力集中的位置,為結(jié)構(gòu)優(yōu)化提供寶貴參考。 近些年來重型自行式平臺(tái)穩(wěn)定性失效逐漸成為重型自行式平臺(tái)事故發(fā)生的主要原因,關(guān)于重型自行式平臺(tái)箱型伸縮臂的穩(wěn)定性分析越來越被學(xué)者們重視。本文在箱型伸縮臂穩(wěn)定性分析時(shí),考慮伸縮臂體與搭接滑塊之間的摩擦力,通過與液壓缸獨(dú)立承擔(dān)軸向力模型,變截面階梯柱模型的比較,推導(dǎo)出由液壓缸和搭接滑塊處的摩擦力共同承擔(dān)軸向力時(shí)箱型伸縮臂的穩(wěn)定性方程。 利用ansys軟件,采用Lanczos法對重型自行式平臺(tái)箱型伸縮臂進(jìn)行模態(tài)分析,提取出前15階固有頻率及振型,并對其進(jìn)行分析。為結(jié)構(gòu)的動(dòng)態(tài)響應(yīng)分析提供了理論基礎(chǔ)。 本文建立了以箱型伸縮臂截面積為目標(biāo)函數(shù),以箱型伸縮臂剛度、強(qiáng)度、穩(wěn)定性及結(jié)構(gòu)尺寸條件為約束條件的箱型伸縮臂結(jié)構(gòu)優(yōu)化數(shù)學(xué)模型,借助Ansys12.0的優(yōu)化程序OPT,進(jìn)行分析和求解,計(jì)算后所得到的伸縮臂截面積減小了7.5%,達(dá)到了降低臂重的目的。
[Abstract]:The heavy-duty self-propelled platform has more joints, more hinges, more working positions, more complicated forces, and more high-wind loads and high sand and dust sites under the combined load of bending, torsion and shear, and the working environment is mostly high wind load and high sand dust construction site. This subject comes from the 11th Five-Year Plan of National Science and Technology support Project "Technology Research and industrialization Development of equipment without scaffolding installation" (No. 2008BAJ09B01-3). The heavy-duty self-propelled platform has the characteristics of long arm, high load, low deformation and so on. In this paper, the strength, stiffness, stability and mode of its structure are studied, and its structure is optimized to reduce its weight. On the basis of a brief explanation of the telescopic principle of the telescopic arm, the strength and stiffness of the telescopic arm under three dangerous working conditions with a lifting angle of 0 擄or 66 擄or 80 擄are analyzed in this paper. According to two different assumptions of axial load bearing of telescopic arm, the finite element model is established for nonlinear static analysis, and the position of dangerous section and stress concentration of telescopic arm in work is determined, which provides valuable reference for structural optimization. In recent years, the stability failure of heavy-duty self-propelled platform has gradually become the main cause of heavy self-propelled platform accidents, and the stability analysis of heavy-duty self-propelled platform box-type telescopic arm has been paid more and more attention by scholars. In this paper, the friction between the telescopic arm and the lap slider is taken into account in the stability analysis of the box-shaped telescopic arm. The model of axial force bearing independently with the hydraulic cylinder and the stepped column model with variable cross section are compared. The stability equation of the box telescopic arm is derived when the axial force is shared by the friction force between the hydraulic cylinder and the lap slider. By using ansys software, the modal analysis of the heavy-duty self-propelled platform box-shaped telescopic arm is carried out by using the Lanczos method. The first 15 natural frequencies and modes are extracted and analyzed. It provides a theoretical basis for the dynamic response analysis of the structure. In this paper, the optimization mathematical model of box telescopic arm structure is established, in which the cross section area of box telescopic arm is taken as the objective function, and the stiffness, strength, stability and structural dimension condition of box telescopic arm are taken as constraint conditions. By using the optimization program of Ansys12.0, the section area of the telescopic arm is reduced by 7.5%, and the weight of the arm is reduced.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH211.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 隋允康,劉趙淼,杜家政,喬志宏,宣兆成,杜惠英,葉紅玲;幾種工程薄殼結(jié)構(gòu)的分析及優(yōu)化設(shè)計(jì)[J];北京工業(yè)大學(xué)學(xué)報(bào);2001年04期
2 王震宇,言正,杜忠權(quán);汽車式起重機(jī)的某些特點(diǎn)[J];工程機(jī)械;1978年01期
3 王強(qiáng)華;一種新型四節(jié)臂同步伸縮機(jī)構(gòu)[J];工程機(jī)械;1991年11期
4 陸念力,孟曉平,顧迪民;具有外伸臂的多跨連續(xù)附著壓桿的非線性變形及整體穩(wěn)定性計(jì)算[J];工程機(jī)械;1996年09期
5 紀(jì)愛敏 ,彭鐸,劉木南,羅衍領(lǐng),張培強(qiáng);QY25K型汽車起重機(jī)伸縮吊臂的有限元分析[J];工程機(jī)械;2003年01期
6 朱渝春,馮賢桂;伸縮臂式起重機(jī)回轉(zhuǎn)側(cè)向動(dòng)載荷的計(jì)算[J];工程機(jī)械;2005年02期
7 施云權(quán);王美成;;起重臂局部屈曲的有限元分析[J];工程機(jī)械;2006年08期
8 陸念力;劉士明;蘭朋;;具有伸縮液壓缸的起重機(jī)伸縮臂之整體穩(wěn)定性[J];工程機(jī)械;2008年09期
9 蘭朋,劉曼蘭,陸念力;彎曲梁柱結(jié)構(gòu)平面外失穩(wěn)的研究[J];工程力學(xué);2005年S1期
10 陸念力,蘭朋,白樺;起重機(jī)箱形伸縮臂穩(wěn)定性分析的精確理論解[J];哈爾濱建筑大學(xué)學(xué)報(bào);2000年02期
,本文編號(hào):1812272
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1812272.html