立式斜流泵主動磁懸浮軸承轉(zhuǎn)子動力系統(tǒng)研究
發(fā)布時間:2018-04-26 14:21
本文選題:主動磁軸承 + 立式泵 ; 參考:《蘭州理工大學(xué)》2013年碩士論文
【摘要】:主動磁懸浮軸承系統(tǒng)是一門集機(jī)械設(shè)計(jì)、電子電路、電磁場、工程力學(xué)、材料學(xué)和仿真學(xué)等學(xué)科于一體的綜合性技術(shù),是一種通過無形地磁場力實(shí)現(xiàn)沒有機(jī)械接觸的高效率、高性能轉(zhuǎn)子系統(tǒng)支承技術(shù)。早期主動磁懸浮軸承系統(tǒng)由于受到控制理論和電器元件滯后的約束,發(fā)展較為緩慢。而伴隨微電子技術(shù)的迅速發(fā)展和應(yīng)用,電子元器件的不斷更新和完善以及控制理論的逐步成熟,主動磁懸浮軸承系統(tǒng)也在飛速發(fā)展。 本文將主動磁懸浮軸承引入立式泵中,用于改善立式泵的主軸導(dǎo)軸承故障率高、易于損壞的問題。在立式泵原先的外圍結(jié)構(gòu)上,針對立式泵的導(dǎo)軸承進(jìn)行改進(jìn)和革新。根據(jù)立式泵轉(zhuǎn)子主軸的特點(diǎn),重新設(shè)計(jì)與立式泵相配套的主動磁懸浮軸承機(jī)械結(jié)構(gòu)并進(jìn)行結(jié)構(gòu)計(jì)算和仿真分析,同時研究設(shè)計(jì)與主動軸承相配套的控制策略、算法及控制平臺。 由于立式泵轉(zhuǎn)子主軸的結(jié)構(gòu)特殊性,本文將首先從立式泵主動磁懸浮軸承的結(jié)構(gòu)設(shè)計(jì)入手,通過使用電學(xué)和電磁學(xué)的基本公式推導(dǎo)出電磁吸力的參考公式,然后使用電磁場仿真軟件對設(shè)計(jì)的結(jié)構(gòu)進(jìn)行磁場仿真,綜合分析后使用三維設(shè)計(jì)軟件對軸承結(jié)構(gòu)進(jìn)行實(shí)體造型并進(jìn)行有限元仿真分析。根據(jù)具體的機(jī)械結(jié)構(gòu)對主動磁軸承的控制策略進(jìn)行研究,對基于實(shí)體結(jié)構(gòu)的主動磁軸承的轉(zhuǎn)子系統(tǒng)分別進(jìn)行單自由度、五自由度數(shù)學(xué)模型建立和分析,結(jié)合文中幾種控制方式得出了PID解耦控制策略并進(jìn)行控制策略仿真分析。 本文中給出了立式泵主動磁軸承的控制平臺的具體結(jié)構(gòu),控制平臺的硬件部分主要包括DSP控制芯片、位移傳感器、功率放大器及電磁模塊。文中給出了芯片的基本運(yùn)行電路以及兩種芯片功能程序,分析了電渦流傳感器的使用電路,并給出了光位移傳感器在主動磁軸承上進(jìn)行使用的原理。 本研究最后進(jìn)行了實(shí)體實(shí)驗(yàn),制作出一臺與實(shí)際立式泵主軸比例為1:4.375的小型立式泵轉(zhuǎn)子主軸四磁極主動磁懸浮軸承實(shí)驗(yàn)平臺,并使用上了文中所給出的光位移傳感器測量主軸位移,實(shí)驗(yàn)驗(yàn)證了PID解耦控制策略的可行性并且實(shí)驗(yàn)中主軸模型順利成功起浮。
[Abstract]:The active magnetic bearing system is a comprehensive technology which integrates mechanical design, electronic circuit, electromagnetic field, engineering mechanics, materials science and simulation science. It is a kind of high efficiency without mechanical contact through invisible geomagnetic force. High performance rotor system supporting technology. The early active magnetic bearing system developed slowly because of the limitation of control theory and the hysteresis of electrical components. With the rapid development and application of microelectronic technology, the continuous updating and improvement of electronic components and the maturation of control theory, the active magnetic bearing system is also developing rapidly. In this paper, the active magnetic bearing is introduced into the vertical pump to improve the failure rate of the shaft guide bearing of the vertical pump, which is easy to be damaged. The original peripheral structure of vertical pump is improved and innovated for the guide bearing of vertical pump. According to the characteristics of the rotor spindle of the vertical pump, the mechanical structure of the active magnetic bearing matching with the vertical pump is redesigned, and the structure calculation and simulation analysis are carried out. At the same time, the control strategy, algorithm and control platform for the design and matching of the active bearing are studied. Because of the special structure of the rotor spindle of the vertical pump, this paper will first start with the structural design of the vertical pump active magnetic suspension bearing, and derive the reference formula of the electromagnetic suction by using the basic formulas of electricity and electromagnetism. Then the electromagnetic field simulation software is used to simulate the magnetic field of the designed structure. After comprehensive analysis, the three-dimensional design software is used to model the bearing structure and the finite element simulation analysis is carried out. The control strategy of active magnetic bearing is studied according to the specific mechanical structure. The rotor system based on solid structure is established and analyzed by mathematical models of single degree of freedom and five degrees of freedom respectively. The decoupling control strategy of PID is obtained by combining several control methods in this paper and the simulation analysis of the control strategy is carried out. In this paper, the structure of the control platform of vertical pump active magnetic bearing is given. The hardware of the control platform mainly includes DSP control chip, displacement sensor, power amplifier and electromagnetic module. In this paper, the basic operation circuit of the chip and two functional programs of the chip are given. The circuit of the eddy current sensor is analyzed, and the principle of using the optical displacement sensor on the active magnetic bearing is given. At the end of the study, an experimental platform of four-pole active magnetic bearing for rotor spindle of small vertical pump with a ratio of 1: 4.375 to the actual vertical pump spindle is made. The optical displacement sensor presented in this paper is used to measure the displacement of the spindle. The feasibility of the decoupling control strategy of PID is verified by experiments and the spindle model is successfully floated in the experiment.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TH133.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 譚鳳順,金能強(qiáng);永磁磁浮軸承的設(shè)計(jì)及其計(jì)算[J];低溫與超導(dǎo);2002年01期
2 鄔清海;朱q,
本文編號:1806405
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1806405.html
最近更新
教材專著