多工藝路線作業(yè)車間批量調(diào)度問(wèn)題研究
本文選題:作業(yè)車間調(diào)度 + 多工藝路線; 參考:《華中科技大學(xué)》2011年碩士論文
【摘要】:當(dāng)今市場(chǎng)競(jìng)爭(zhēng)日益激烈,消費(fèi)個(gè)性化、需求多樣化使得多品種小批量成為企業(yè)生產(chǎn)的新趨勢(shì),因此高效的車間調(diào)度對(duì)生產(chǎn)制造企業(yè)顯得尤為重要,也是提高企業(yè)競(jìng)爭(zhēng)力的關(guān)鍵因素。作業(yè)車間調(diào)度(Job Shop Scheduling, JSP)是實(shí)際調(diào)度問(wèn)題的簡(jiǎn)化,現(xiàn)實(shí)制造系統(tǒng)的調(diào)度問(wèn)題通常還具有多工藝和多批量的特點(diǎn)。由于作業(yè)車間調(diào)度是NP-hard問(wèn)題,多工藝路線作業(yè)車間批量調(diào)度問(wèn)題大大增加了問(wèn)題的復(fù)雜性,對(duì)該問(wèn)題的研究具有重要的理論意義和實(shí)用價(jià)值。 首先,本文介紹了課題的來(lái)源、目的和意義,論述了作業(yè)車間調(diào)度問(wèn)題、多工藝路線作業(yè)車間批量調(diào)度的研究現(xiàn)狀,以及車間調(diào)度問(wèn)題的發(fā)展趨勢(shì)。 然后,研究了多工藝路線作業(yè)車間調(diào)度問(wèn)題,構(gòu)建了多工藝路線JSP問(wèn)題的數(shù)學(xué)集成模型;趶V義粒子群優(yōu)化模型,構(gòu)造了一種求解多工藝路線JSP問(wèn)題的廣義粒子群優(yōu)化算法(GPSO)。在該算法中,利用遺傳算法(GA)中的交叉操作作為粒子間的信息交換策略,遺傳算法中的變異操作則作為粒子的隨機(jī)搜索策略,而粒子的局部搜索策略則采用禁忌搜索(TS)來(lái)實(shí)現(xiàn)。實(shí)驗(yàn)結(jié)果表明,該算法可有效地求解多工藝路線JSP問(wèn)題。 接著,研究了多工藝路線作業(yè)車間批量調(diào)度問(wèn)題。采用等量分批的策略,同時(shí)引入平行移動(dòng)的方法,使其與等量分批結(jié)合起來(lái),從而達(dá)到有效優(yōu)化生產(chǎn)周期的目的;贕PSO算法,采用一種有效初始化方法,使得粒子編碼能產(chǎn)生較優(yōu)的初始解。針對(duì)多工藝路線批量調(diào)度問(wèn)題,設(shè)計(jì)了一種新的交叉方法。通過(guò)對(duì)具體實(shí)例的仿真測(cè)試,研究批次變化對(duì)多工藝批量調(diào)度生產(chǎn)周期的影響,驗(yàn)證了該算法的可行性和有效性。 隨后,通過(guò)研究多工藝路線批量調(diào)度問(wèn)題,結(jié)合GPSO的優(yōu)化思想,開(kāi)發(fā)了相應(yīng)的調(diào)度原型系統(tǒng)。通過(guò)測(cè)試結(jié)果,再次驗(yàn)證了算法的有效性。 最后,對(duì)全文進(jìn)行總結(jié),并對(duì)多工藝路線作業(yè)車間批量調(diào)度問(wèn)題的研究做了進(jìn)一步展望。
[Abstract]:Nowadays, the market competition is increasingly fierce, the consumption individuation, the demand diversification causes the multi-variety small batch to become the enterprise production new tendency, therefore the high efficiency workshop scheduling appears to the production manufacture enterprise to be particularly important. It is also the key factor to improve the competitiveness of enterprises. Job shop Shop scheduling (JSP) is the simplification of practical scheduling problem. The scheduling problem of real manufacturing system usually has the characteristics of multi-process and multi-batch. Because job shop scheduling is a NP-hard problem, the multi-process route job shop batch scheduling problem greatly increases the complexity of the problem, so the study of this problem has important theoretical significance and practical value. First of all, this paper introduces the source, purpose and significance of the subject, discusses the job shop scheduling problem, the research status of the multi-process route job shop batch scheduling, and the development trend of the job shop scheduling problem. Then, the multi-process route job shop scheduling problem is studied, and the mathematical integration model of multi-process route JSP problem is constructed. Based on the generalized particle swarm optimization (GPSO) model, a generalized particle swarm optimization (GPSO) algorithm for solving multi-process route JSP problem is proposed. In this algorithm, the crossover operation in GA) is used as the information exchange strategy between particles, the mutation operation in genetic algorithm is used as the random searching strategy of particles, and the local search strategy of particles is implemented by Tabu search (TS). The experimental results show that the algorithm can effectively solve the multi-process route JSP problem. Then, the batch scheduling problem of multi-process route job shop is studied. The strategy of equal quantity batch and the method of parallel movement are introduced to combine it with equal quantity batch, so that the production cycle can be optimized effectively. Based on the GPSO algorithm, an effective initialization method is adopted to make the particle coding produce better initial solution. A new crossover method is designed for batch scheduling of multi-process routes. The effect of batch change on the production cycle of multi-process batch scheduling is studied through the simulation test of a concrete example, and the feasibility and effectiveness of the algorithm are verified. Then, by studying the multi-process route batch scheduling problem and combining the optimization idea of GPSO, the corresponding scheduling prototype system is developed. The test results show that the algorithm is effective again. Finally, the paper summarizes the whole paper and makes a further prospect on batch scheduling problem of multi-process route job shop.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH186
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 越民義,韓繼業(yè);n個(gè)零件在m臺(tái)機(jī)床上的加工順序問(wèn)題(Ⅰ)[J];中國(guó)科學(xué);1975年05期
2 張志英,唐承統(tǒng),張建民,王新永,孫連勝;遺傳算法在柔性CAPP與生產(chǎn)調(diào)度集成中的應(yīng)用[J];計(jì)算機(jī)集成制造系統(tǒng)-CIMS;2002年08期
3 彭傳勇;高亮;邵新宇;周馳;;求解作業(yè)車間調(diào)度問(wèn)題的廣義粒子群優(yōu)化算法[J];計(jì)算機(jī)集成制造系統(tǒng);2006年06期
4 高海兵;周馳;高亮;;廣義粒子群優(yōu)化模型[J];計(jì)算機(jī)學(xué)報(bào);2005年12期
5 孫志峻,喬冰,潘全科,朱劍英;具有柔性加工路徑的作業(yè)車間批量調(diào)度優(yōu)化研究[J];機(jī)械科學(xué)與技術(shù);2002年03期
6 潘全科,朱劍英;多工藝路線的批量生產(chǎn)調(diào)度優(yōu)化[J];機(jī)械工程學(xué)報(bào);2004年04期
7 吳德中,嚴(yán)雋琪,王麗亞;CAPP與PPC的并行分布式集成研究[J];上海交通大學(xué)學(xué)報(bào);1996年12期
8 楊圣祥,汪定偉;神經(jīng)網(wǎng)絡(luò)和啟發(fā)式算法混合策略解Job-shop調(diào)度問(wèn)題[J];系統(tǒng)工程學(xué)報(bào);1999年02期
9 王書(shū)鋒,鄒益仁;車間作業(yè)調(diào)度(JSSP)技術(shù)問(wèn)題簡(jiǎn)明綜述[J];系統(tǒng)工程理論與實(shí)踐;2003年01期
相關(guān)博士學(xué)位論文 前2條
1 張超勇;基于自然啟發(fā)式算法的作業(yè)車間調(diào)度問(wèn)題理論與應(yīng)用研究[D];華中科技大學(xué);2007年
2 李新宇;工藝規(guī)劃與車間調(diào)度集成問(wèn)題的求解方法研究[D];華中科技大學(xué);2009年
,本文編號(hào):1793517
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1793517.html