低溫壓力容器缺陷紅外檢測及熱激勵影響分析
本文選題:低溫壓力容器 切入點(diǎn):缺陷 出處:《東北石油大學(xué)》2012年碩士論文
【摘要】:低溫壓力容器是壓力容器的常見形式之一,廣泛應(yīng)用于油田、天然氣生產(chǎn)過程和石油化工等工藝裝置中。低溫壓力容器盛裝著易燃、易爆、劇毒或腐蝕介質(zhì),是涉及生命安全、危險性較大的承壓設(shè)備,在使用過程中常因介質(zhì)、載荷、溫度和環(huán)境等因素的影響而產(chǎn)生腐蝕、沖蝕、磨損、應(yīng)力腐蝕開裂、疲勞開裂、材料劣化等缺陷。因此,,快速診斷低溫壓力容器使用過程中的缺陷,及時維修設(shè)備,是確保設(shè)備和人員安全的關(guān)鍵因素。 本文根據(jù)紅外成像無損檢測原理、傳熱學(xué)理論,建立了不考慮容器內(nèi)相變的缺陷傳熱模型,基于控制體積法,進(jìn)行不同熱激勵強(qiáng)度、不同熱激勵時間、不同環(huán)境因素、不同缺陷參數(shù)條件下的數(shù)值模擬分析,在此基礎(chǔ)上根據(jù)相變傳熱的基本理論,建立了考慮容器內(nèi)相變的缺陷傳熱模型,利用FLUENT中的多相流模型混合(mixture)模型,對熱激勵作用下容器內(nèi)流體的汽化過程進(jìn)行了模擬,并研究了流體發(fā)生相變時對壓力容器壁表面溫度的影響。研究結(jié)果表明:(1)隨著熱激勵強(qiáng)度的增大,壓力容器表面的對比溫度逐漸增大;(2)隨著激勵時間增加,最大對比溫度呈現(xiàn)先升后降的趨勢,最終減小在穩(wěn)定狀態(tài)時對應(yīng)的對比溫度;(3)環(huán)境因素中風(fēng)速、表面黑度對紅外檢測精度的影響較大,而在大氣環(huán)境中進(jìn)行壓力容器缺陷紅外檢測時可以忽略環(huán)境溫度的影響;(4)隨著缺陷的增大,壓力容器表面對比溫度逐漸增大,亦即壓力容器內(nèi)的缺陷面積越大,越容易被檢測出來。隨著缺陷深度的增加,壓力容器表面的最大對比溫度是逐漸減小的,也就是說缺陷距離加熱表面的深度越淺,表面溫度異常越明顯,越容易檢測;(5)容器內(nèi)流體在t=10s時發(fā)生相變,隨著熱激勵時間的增加氣相所占的體積分?jǐn)?shù)增大;當(dāng)容器內(nèi)流體發(fā)生相變時,對紅外檢測有一定的影響。 本文的研究結(jié)論對于指導(dǎo)紅外成像技術(shù)快速診斷低溫壓力容器使用過程中的缺陷具有一定的借鑒作用。
[Abstract]:Low temperature pressure vessel is one of the common forms of pressure vessel, which is widely used in oil field, natural gas production process and petrochemical process. Low temperature pressure vessel is filled with flammable, explosive, highly toxic or corrosive medium, which involves life safety. In the process of use, the high risk pressure equipment often produces the defects such as corrosion, erosion, wear, stress corrosion cracking, fatigue cracking, material deterioration and so on due to the influence of medium, load, temperature and environment. Rapid diagnosis of defects in the use of cryogenic pressure vessels and timely maintenance of equipment are the key factors to ensure the safety of equipment and personnel. According to the principle of infrared imaging nondestructive testing and the theory of heat transfer, a defect heat transfer model without considering the phase change in the vessel is established in this paper. Based on the control volume method, different thermal excitation intensity, different thermal excitation time and different environmental factors are carried out. Based on the basic theory of phase change heat transfer, a defect heat transfer model considering phase change in a vessel is established based on the numerical simulation analysis under different defect parameters. The model is mixed by using the multiphase flow model in FLUENT. The vaporization process of the fluid in the vessel under thermal excitation is simulated, and the influence of the fluid phase transition on the wall surface temperature of the pressure vessel is studied. The results show that the temperature of the wall surface increases with the increase of the thermal excitation intensity. The contrast temperature on the surface of the pressure vessel increases gradually with the increase of the excitation time, and the maximum contrast temperature increases first and then decreases, and finally decreases the wind speed in the environmental factors corresponding to the contrast temperature in the stable state. The surface blackness has a great influence on the infrared detection accuracy. However, the influence of ambient temperature on infrared detection of defects of pressure vessels can be ignored in the atmospheric environment.) with the increase of defects, the surface contrast temperature of pressure vessels increases gradually. In other words, the larger the defect area in the pressure vessel, the easier it is to be detected. As the depth of the defect increases, the maximum contrast temperature on the surface of the pressure vessel decreases gradually, which means that the deeper the defect is from the heated surface, the lighter the defect is. The more obvious the surface temperature anomaly is, the easier it is to detect the phase transition of the fluid in the container at 10 s, and the volume fraction of the gas phase increases with the increase of the thermal excitation time, and the phase transition in the vessel will have a certain effect on the infrared detection. The conclusion of this paper is useful for guiding infrared imaging technology to quickly diagnose defects in cryogenic pressure vessels.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TG115.28;TH49
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 茍小龍;張建濤;王廣軍;;基于導(dǎo)熱反問題的管道內(nèi)部缺陷診斷[J];重慶大學(xué)學(xué)報;2010年02期
2 ;Numerical Simulation of Line Puff Via RNGK-ep Mode[J];Communications in Nonlinear Science & Numerical Simulation;1996年04期
3 趙石彬;張存林;伍耐明;段玉霞;李艷紅;;紅外熱波無損檢測技術(shù)用于聚丙烯管道缺陷的檢測[J];光學(xué)學(xué)報;2010年02期
4 傅惠民,錢若力;無損檢測可靠性與壽命控制方法[J];航空動力學(xué)報;1994年03期
5 李路明,黃松嶺,楊海青,徐可北;復(fù)合材料分層缺陷的紅外熱像檢測[J];航天制造技術(shù);2002年02期
6 菅魯京;張加迅;李勁東;;不同尺度下相變材料熔化過程自然對流影響分析[J];航天器環(huán)境工程;2008年04期
7 陳玨;材料內(nèi)部脫粘的紅外無損檢測[J];紅外技術(shù);2001年03期
8 關(guān)榮華;紅外熱診斷與導(dǎo)熱反問題計(jì)算[J];紅外技術(shù);2002年05期
9 陳玨;紅外無損檢測技術(shù)的傳熱學(xué)分析[J];紅外與毫米波學(xué)報;2000年04期
10 劉新業(yè),常大定,歐陽倫多;紅外熱成像在電氣設(shè)備維護(hù)中的應(yīng)用[J];紅外與激光工程;2002年03期
相關(guān)碩士學(xué)位論文 前2條
1 樊丹丹;基于紅外熱波的界面脫粘無損檢測技術(shù)研究[D];中北大學(xué);2011年
2 邵磊;Venlo型溫室熱濕環(huán)境數(shù)值分析研究[D];浙江工業(yè)大學(xué);2009年
本文編號:1696745
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1696745.html