多目標(biāo)拆卸線平衡問(wèn)題的群集智能優(yōu)化算法研究
本文選題:拆卸線平衡問(wèn)題 切入點(diǎn):多目標(biāo) 出處:《西南交通大學(xué)》2012年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著生產(chǎn)者責(zé)任延伸制的推行、各國(guó)新的更多的環(huán)境立法的建立以及公眾環(huán)境意識(shí)的提高,制造商開(kāi)始回收和再制造廢舊的產(chǎn)品。此外,重新使用廢舊產(chǎn)品所帶來(lái)的經(jīng)濟(jì)吸引力也從另一個(gè)層面推動(dòng)了更多制造商的投入。拆卸是重新使用、制造、回收、存儲(chǔ)以及合理處理產(chǎn)品關(guān)鍵的第一步,拆卸線是實(shí)現(xiàn)大規(guī)模拆卸的最佳選擇,因而有效設(shè)計(jì)和平衡拆卸線對(duì)提高拆卸效率至關(guān)重要,因此研究拆卸線平衡問(wèn)題具有重要的理論和實(shí)際意義。 結(jié)合拆卸線的特點(diǎn),提出了多目標(biāo)拆卸線平衡問(wèn)題的數(shù)學(xué)模型,其優(yōu)化目標(biāo)為最小化工作站數(shù)、均衡各工作站空閑時(shí)間,并考慮拆卸產(chǎn)品部件的危害、需求以及方向。在此基礎(chǔ)上,采用兩種群集智能優(yōu)化算法—粒子群算法和蟻群算法研究了多目標(biāo)拆卸線平衡問(wèn)題。 提出了一種目標(biāo)基于優(yōu)先排序的粒子群算法,該算法采用隨機(jī)數(shù)生成粒子的位置和速度,而位置和速度的更新則為對(duì)應(yīng)隨機(jī)數(shù)相加減,進(jìn)而把位置的隨機(jī)數(shù)作為選擇零件的權(quán)重,從而根據(jù)權(quán)重的大小來(lái)選擇拆卸的零件。并通過(guò)具體的實(shí)例以及基準(zhǔn)例子驗(yàn)證了算法的有效性。 提出了一種基于Pareto的粒子群算法來(lái)求解多目標(biāo)拆卸線平衡問(wèn)題,該算法采用小生境技術(shù)選取多目標(biāo)的全局最優(yōu)解,采用Pareto占優(yōu)以及分散度作為個(gè)體評(píng)價(jià)以及局部最優(yōu)解選取,最后通過(guò)具體的實(shí)例以及基準(zhǔn)例子驗(yàn)證了算法的有效性。 提出了一種目標(biāo)基于優(yōu)先排序的蟻群算法來(lái)求解多目標(biāo)拆卸線平衡問(wèn)題,該算法考慮了以零件拆卸時(shí)間、危害以及需求三種規(guī)則的啟發(fā)式信息,并綜合考慮利用先驗(yàn)知識(shí)、探索新路徑、隨機(jī)選擇三種方式的混合搜索機(jī)制,有效的提高了算法的搜索效率,并通過(guò)具體的實(shí)例以及基準(zhǔn)例子驗(yàn)證了算法的有效性。
[Abstract]:With the extension of producer responsibility, the establishment of new and more environmental legislation in various countries and the increasing public awareness of the environment, manufacturers began to recycle and re-manufacture used products. The economic appeal of reusing used products also drives more manufacturers on another level. Disassembly is a critical first step in reusing, manufacturing, recycling, storing, and reasonably disposing of products. The disassembly line is the best choice to realize the large-scale disassembly, so it is very important to design and balance the disassembly line effectively to improve the disassembly efficiency. Therefore, it is of great theoretical and practical significance to study the disassembly line balance problem. Combined with the characteristics of disassembly line, the mathematical model of multi-objective disassembly line balance problem is put forward. Its optimization goal is to minimize the number of workstations, to balance the idle time of each workstation, and to consider the harm of disassembly parts. On the basis of this, two cluster intelligent optimization algorithms, particle swarm optimization (PSO) and ant colony algorithm (ACA), are used to study the multi-objective disassembly line balance problem. A priority-based particle swarm optimization algorithm is proposed, in which the random number is used to generate the position and velocity of the particle, and the update of the position and velocity is the addition and subtraction of the corresponding random number. Then the random number of positions is taken as the weight of the selected parts, and then the disassembled parts are selected according to the weight, and the validity of the algorithm is verified by concrete examples and benchmark examples. A particle swarm optimization (PSO) algorithm based on Pareto is proposed to solve the multi-objective disassembly line balance problem. The algorithm uses niche technology to select the global optimal solution of multi-objective, Pareto dominance and dispersion as individual evaluation and local optimal solution selection. Finally, the effectiveness of the algorithm is verified by concrete examples and benchmark examples. An ant colony algorithm based on priority is proposed to solve the multi-objective disassembly line balance problem. The algorithm takes into account the heuristic information of disassembly time, harm and requirement rules, and synthetically considers the use of prior knowledge. The search efficiency of the algorithm is improved by exploring the new path and selecting three kinds of hybrid search mechanism randomly, and the effectiveness of the algorithm is verified by concrete examples and benchmark examples.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:TP18;TH186
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 趙忠;劉貴華;;基于遺傳算法的產(chǎn)品拆卸線平衡問(wèn)題研究[J];河南科學(xué);2011年06期
2 張則強(qiáng);程文明;鐘斌;王金諾;;求解裝配線平衡問(wèn)題的一種改進(jìn)蟻群算法[J];計(jì)算機(jī)集成制造系統(tǒng);2007年08期
3 丁力平;譚建榮;馮毅雄;高一聰;;基于Pareto蟻群算法的拆卸線平衡多目標(biāo)優(yōu)化[J];計(jì)算機(jī)集成制造系統(tǒng);2009年07期
4 張則強(qiáng);程文明;鐘斌;王金諾;;混合品種裝配線平衡問(wèn)題的一種混合搜索機(jī)制的蟻群算法[J];機(jī)械工程學(xué)報(bào);2009年05期
5 邢宇飛;王成恩;柳強(qiáng);;基于Pareto解集蟻群算法的拆卸序列規(guī)劃[J];機(jī)械工程學(xué)報(bào);2012年09期
6 趙忠;;產(chǎn)品拆卸線的影響因素及平衡問(wèn)題研究[J];價(jià)值工程;2010年26期
7 朱興濤;張則強(qiáng);胡俊逸;;基于粒子群算法的U型裝配線平衡問(wèn)題研究[J];組合機(jī)床與自動(dòng)化加工技術(shù);2012年04期
相關(guān)博士學(xué)位論文 前6條
1 劉衍民;粒子群算法的研究及應(yīng)用[D];山東師范大學(xué);2011年
2 張則強(qiáng);基于仿生的數(shù)字物流平衡問(wèn)題理論與應(yīng)用研究[D];西南交通大學(xué);2006年
3 陶振武;基于群集智能的產(chǎn)品共進(jìn)化設(shè)計(jì)方法研究[D];華中科技大學(xué);2007年
4 王宇嘉;多目標(biāo)粒子群優(yōu)化算法的全局搜索策略研究[D];上海交通大學(xué);2008年
5 田野;粒子群優(yōu)化算法及其應(yīng)用研究[D];吉林大學(xué);2010年
6 韓霄松;快速群智能優(yōu)化算法的研究[D];吉林大學(xué);2012年
,本文編號(hào):1629419
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1629419.html