紅光測(cè)距式浮標(biāo)氣電轉(zhuǎn)換技術(shù)及其應(yīng)用的研究
發(fā)布時(shí)間:2018-03-13 17:32
本文選題:浮標(biāo)式氣動(dòng)量?jī)x 切入點(diǎn):紅光傳感器 出處:《哈爾濱工業(yè)大學(xué)》2011年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:電液伺服閥閥芯和閥套疊合量的測(cè)量是伺服閥加工過(guò)程中必不可少的步驟,氣動(dòng)測(cè)量具有可實(shí)現(xiàn)非接觸測(cè)量、可做特殊部位的測(cè)量、對(duì)測(cè)量條件要求不高和分辨率高等優(yōu)點(diǎn),為此采用氣動(dòng)測(cè)量來(lái)進(jìn)行伺服閥閥芯和閥套疊合量的測(cè)量。氣動(dòng)測(cè)量包括壓力式氣動(dòng)測(cè)量和流量式氣動(dòng)測(cè)量,從原理上講壓力式氣動(dòng)測(cè)量壓力值與噴嘴開(kāi)口量大小是非線性的關(guān)系,而流量式氣動(dòng)測(cè)量測(cè)量原理是線性的,為此流量式氣動(dòng)測(cè)量方法作為首選。對(duì)于流量式氣動(dòng)測(cè)量,浮標(biāo)式氣動(dòng)量?jī)x相對(duì)于其他流量傳感器所造成的壓差恒定,始終等于浮標(biāo)的重力,這使得它可以應(yīng)用到伺服閥疊合量測(cè)量這樣的精密測(cè)試中。但普通的浮標(biāo)式氣動(dòng)量?jī)x需要人工進(jìn)行讀數(shù),為了實(shí)現(xiàn)自動(dòng)化疊合量流量式氣動(dòng)測(cè)量,設(shè)計(jì)了紅光測(cè)距式浮標(biāo)氣電轉(zhuǎn)換裝置。 首先介紹了流量式氣動(dòng)測(cè)量的原理,分析了如何通過(guò)紅光測(cè)距傳感器的來(lái)實(shí)現(xiàn)浮標(biāo)式氣動(dòng)量?jī)x浮標(biāo)的高度的自動(dòng)化采集,為下一步這個(gè)紅光測(cè)距式浮標(biāo)氣電轉(zhuǎn)換裝置的設(shè)計(jì)提供了理論支撐。 然后通過(guò)在普通浮標(biāo)式氣動(dòng)量?jī)x基礎(chǔ)上加裝紅光測(cè)距傳感器,通過(guò)理論計(jì)算以及Fluent仿真設(shè)計(jì)浮標(biāo)的大小以及形狀,并對(duì)該裝置硬件電路進(jìn)行了設(shè)計(jì)分析,最后對(duì)整個(gè)裝置進(jìn)行實(shí)驗(yàn)驗(yàn)證,其測(cè)量非線性誤差小于普通浮標(biāo)量?jī)x的測(cè)量非線性誤差,從而驗(yàn)證了整個(gè)裝置的可行性。 為了將所設(shè)計(jì)的紅光測(cè)距式浮標(biāo)氣電轉(zhuǎn)換裝置應(yīng)用到伺服閥閥芯和閥套疊合量測(cè)量中,研制了整個(gè)疊合量測(cè)量臺(tái),包括機(jī)械夾具部分、電路部分、氣路部分以及軟件控制部分,最終實(shí)現(xiàn)了自動(dòng)化疊合量流量式氣動(dòng)測(cè)量通過(guò)對(duì)某種型號(hào)的伺服閥進(jìn)行測(cè)量,得到的測(cè)量結(jié)果是合理的,而且整個(gè)測(cè)量臺(tái)的不重復(fù)性誤差不超過(guò)1μm,滿足生產(chǎn)要求。
[Abstract]:The measurement of the superposition between valve core and valve sleeve of electro-hydraulic servo valve is an essential step in the machining process of servo valve. Pneumatic measurement has the advantages of non-contact measurement, special position measurement, low requirement for measuring condition and high resolution. For this purpose, pneumatic measurement is used to measure the superposition between the valve core and the valve sleeve. Pneumatic measurement includes pressure pneumatic measurement and flow pneumatic measurement. In principle, the pressure value of pressure pneumatic measurement is nonlinear to the nozzle opening, while the flow pneumatic measurement principle is linear. Therefore, the flow pneumatic measurement method is the first choice. The pressure difference caused by the buoy pneumatic meter relative to other flow sensors is constant, always equal to the gravity of the buoy. This allows it to be applied to precise measurements such as servo valve superposition measurement, but ordinary buoy pneumatic gauges require manual readings, in order to achieve automatic superposition flow pneumatic measurements, A red-light ranging device for gas-electric conversion of buoys is designed. Firstly, the principle of flow-type pneumatic measurement is introduced, and how to realize the automatic collection of the height of the buoy by using the red light ranging sensor is analyzed. It provides the theoretical support for the design of the gas-electric conversion device of the red light ranging buoy. Then the size and shape of the buoy are designed through theoretical calculation and Fluent simulation, and the hardware circuit of the device is designed and analyzed by adding the red light ranging sensor on the basis of the ordinary buoy pneumatic meter. Finally, the experimental results show that the measuring nonlinear error of the whole device is smaller than that of the ordinary buoy gauge, which verifies the feasibility of the whole device. In order to apply the designed red-light ranging buoy gas-electric conversion device to the measurement of the superposition between the valve core and the valve sleeve, the whole superposition measurement platform, including the mechanical fixture part and the circuit part, has been developed. In the part of gas path and the part of software control, the automatic superposition flow rate pneumatic measurement is finally realized through the measurement of a certain type of servo valve, and the measured results are reasonable. Moreover, the non-repeatability error of the whole measuring station is not more than 1 渭 m, which meets the production requirements.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類(lèi)號(hào)】:TH138
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 寧會(huì)峰;崔曉杰;龔俊;;珩磨氣動(dòng)測(cè)量系統(tǒng)曲面擋板特性方程的研究[J];機(jī)械制造;2011年04期
2 張永輝;崔曉蕾;王濤;;電子式氣動(dòng)量?jī)x的工作原理及其應(yīng)用[J];現(xiàn)代制造技術(shù)與裝備;2011年04期
3 王世龍;王麗娜;蔡永輝;王宏博;;氣動(dòng)式孔徑錐度誤差測(cè)量?jī)x[J];液壓與氣動(dòng);2011年08期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關(guān)會(huì)議論文 前3條
1 楊慕升;張宇;;基于氣電轉(zhuǎn)換的零件內(nèi)孔尺寸與形狀精度檢測(cè)研究[A];第六屆全國(guó)信息獲取與處理學(xué)術(shù)會(huì)議論文集(3)[C];2008年
2 楊廣s,
本文編號(hào):1607406
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1607406.html
最近更新
教材專(zhuān)著