往復(fù)式壓縮機(jī)迷宮密封流場(chǎng)動(dòng)力和熱力特性分析及活塞結(jié)構(gòu)研究
本文選題:往復(fù)式壓縮機(jī) 切入點(diǎn):迷宮密封 出處:《沈陽(yáng)理工大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
【摘要】:在機(jī)械制造業(yè)發(fā)展初期,人們采用靜止密封方式,把需要密封的機(jī)器部件盡可能加以相互壓緊,并索性用物質(zhì)填充殘留的間隙。隨著非接觸式密封的推廣,越來越多機(jī)械設(shè)備中采用了非接觸式密封,,而其中應(yīng)用較為廣泛的當(dāng)屬迷宮密封。迷宮密封由于在制造、裝配、和運(yùn)載上的優(yōu)勢(shì)使其廣泛應(yīng)用于石油化工、煉油、化肥、煤制氣等工業(yè)上。長(zhǎng)期以來,人們一直不懈地對(duì)它進(jìn)行研究,得出了如下的簡(jiǎn)要結(jié)論:迷宮密封是依靠工作介質(zhì)在流動(dòng)過程中的能量損耗來決定其密封性能;動(dòng)力機(jī)械的能量消耗情況主要受泄漏量大小的影響。隨著科學(xué)技術(shù)的飛速發(fā)展,依賴于總體試驗(yàn)的傳統(tǒng)研究方法逐漸地暴露出自身有待完善之處,例如對(duì)迷宮空腔及間隙內(nèi)部流場(chǎng)和壓力場(chǎng)定量認(rèn)識(shí)不足。本文以應(yīng)用于往復(fù)式壓縮機(jī)的迷宮密封及其活塞結(jié)構(gòu)為研究對(duì)象,進(jìn)一步完善迷宮密封的理論研究,為迷宮結(jié)構(gòu)的合理設(shè)計(jì)和優(yōu)化以及迷宮式壓縮機(jī)的國(guó)產(chǎn)化提供參考。本文一系列較深入的研究工作可羅列為以下幾點(diǎn): 1、回顧了往復(fù)式壓縮機(jī)及迷宮密封研究現(xiàn)狀,重點(diǎn)介紹了迷宮密封的相關(guān)理論和與相應(yīng)尺寸匹配下的活塞結(jié)構(gòu)。 2、設(shè)計(jì)出工程中迷宮密封的幾何模型與計(jì)算流體力學(xué)模型(FLUENT軟件中的前處理器Gmbilt設(shè)計(jì)幾何模型、FLUENT為計(jì)算流體力學(xué)模型平臺(tái)),模擬了迷宮密封內(nèi)部流動(dòng)的形態(tài),根據(jù)模擬數(shù)值為迷宮密封相關(guān)參數(shù)的設(shè)計(jì)提供了有效數(shù)值。 3、針對(duì)影響迷宮密封性能的內(nèi)部結(jié)構(gòu)尺寸進(jìn)行了數(shù)值仿真,得出不同結(jié)構(gòu)下的流動(dòng)規(guī)律和特點(diǎn);通過細(xì)致分析內(nèi)部流場(chǎng),探討了不同結(jié)構(gòu)尺寸對(duì)泄漏特性的影響,揭示了傳統(tǒng)迷宮的密封機(jī)理,并提出了合理迷宮結(jié)構(gòu)優(yōu)化建議。 4、根據(jù)優(yōu)化后的迷宮密封內(nèi)部結(jié)構(gòu)尺寸,對(duì)傳統(tǒng)迷宮密封結(jié)構(gòu)相配合的活塞結(jié)構(gòu)尺寸進(jìn)行一定程度上的更改,以期達(dá)到更好的密封效果。
[Abstract]:In the early stage of the development of mechanical manufacturing, people adopted static sealing, pressed the machine parts that needed to seal each other as much as possible, and filled the remaining gap with material. With the popularization of non-contact seal, A growing number of mechanical equipment use non-contact seals, among which labyrinth seals are widely used. Labyrinth seals are widely used in petrochemical, oil refining and chemical fertilizers due to their advantages in manufacture, assembly, and transportation. For a long time, people have been unremitting research on coal gasification and other industries, and the following brief conclusions have been drawn: labyrinth seal depends on the energy loss of the working medium in the flow process to determine its sealing performance; With the rapid development of science and technology, the traditional research methods, which rely on the overall test, gradually exposed their own needs to be improved. For example, the quantitative understanding of flow field and pressure field in labyrinth cavity and clearance is not enough. In this paper, the labyrinth seal and piston structure applied in reciprocating compressor are taken as the research object, and the theoretical study of labyrinth seal is further improved. It provides a reference for the reasonable design and optimization of labyrinth structure and the localization of labyrinth compressor. A series of in-depth research work in this paper can be listed as follows:. 1. The research status of reciprocating compressor and labyrinth seal is reviewed, and the relevant theory of labyrinth seal and piston structure matching with corresponding size are introduced. 2. The geometric model of labyrinth seal and the model of computational fluid dynamics (CFD) are designed. The pre-processor Gmbilt model in fluent software is designed as the platform of CFD model, and the internal flow pattern of labyrinth seal is simulated. According to the simulation value, the effective value is provided for the design of the labyrinth seal parameters. 3. Numerical simulation is carried out on the internal structure size which affects the performance of labyrinth seal, and the flow law and characteristics under different structures are obtained, and the effects of different structure dimensions on leakage characteristics are discussed through detailed analysis of internal flow field. The sealing mechanism of the traditional labyrinth is revealed, and the optimization suggestion of the labyrinth structure is put forward. 4. According to the internal structure of the optimized labyrinth seal, the piston structure size of the traditional labyrinth seal structure is changed to a certain extent, in order to achieve better sealing effect.
【學(xué)位授予單位】:沈陽(yáng)理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃守龍,陸家鵬,徐誠(chéng);直通式迷宮瞬態(tài)壓力特性的實(shí)驗(yàn)研究[J];彈道學(xué)報(bào);1994年04期
2 黃守龍,馬毓義,武曉松,徐誠(chéng);迷宮通道內(nèi)部流動(dòng)和泄漏特性的數(shù)值分析[J];航空動(dòng)力學(xué)報(bào);1995年02期
3 吳寧興;航空發(fā)動(dòng)機(jī)密封技術(shù)的最新進(jìn)展[J];航空發(fā)動(dòng)機(jī);1998年01期
4 丁學(xué)俊;肖國(guó)俊;楊彥磊;李哲;;迷宮密封齒型對(duì)密封流場(chǎng)與泄漏量的影響[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年07期
5 馬波;高金吉;江志農(nóng);;往復(fù)壓縮機(jī)活塞桿斷裂早期預(yù)警技術(shù)的研究[J];機(jī)械強(qiáng)度;2008年03期
6 劉有軍;迷宮密封的湍流增阻[J];機(jī)械工程學(xué)報(bào);2004年05期
7 王鎖芳,呂海峰,夏登勇;封嚴(yán)篦齒結(jié)構(gòu)特性的數(shù)值分析和實(shí)驗(yàn)研究[J];南京航空航天大學(xué)學(xué)報(bào);2004年06期
8 周受欽,謝友柏;迷宮密封動(dòng)力特性影響因素分析[J];潤(rùn)滑與密封;1999年01期
9 劉有軍,楊曉翔;徑向迷宮密封泄漏特性的數(shù)值預(yù)報(bào)[J];潤(rùn)滑與密封;1999年06期
10 劉有軍;鋸齒型徑向迷宮密封機(jī)理研究[J];潤(rùn)滑與密封;2002年06期
相關(guān)碩士學(xué)位論文 前1條
1 林麗;迷宮活塞式壓縮機(jī)密封機(jī)理的理論研究[D];南京航空航天大學(xué);2007年
本文編號(hào):1600934
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1600934.html