無節(jié)流損失閥控動(dòng)力單元的機(jī)理與應(yīng)用研究
發(fā)布時(shí)間:2018-03-02 02:19
本文關(guān)鍵詞: 閥控動(dòng)力單元 無節(jié)流損失 節(jié)能 高速開關(guān)閥 位置控制 力控制 出處:《上海交通大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
【摘要】:液壓系統(tǒng)與機(jī)械、電力傳動(dòng)系統(tǒng)相比,具有功率密度大、便于實(shí)現(xiàn)無級(jí)調(diào)速和過載保護(hù)等優(yōu)點(diǎn),被廣泛用于工業(yè)控制中。但是傳統(tǒng)液壓系統(tǒng)中存在大量的節(jié)流損失和溢流損失,導(dǎo)致系統(tǒng)效率只有30%左右。節(jié)能已經(jīng)成為當(dāng)今液壓技術(shù)應(yīng)用與發(fā)展不可忽視的問題之一。本論文正是從減小節(jié)流損失和溢流損失的角度出發(fā),提出了無節(jié)流損失閥控動(dòng)力單元的新概念,研究了其實(shí)現(xiàn)機(jī)理,建立了仿真模型,并對基于無節(jié)流損失閥控動(dòng)力單元的位置、力控制系統(tǒng)進(jìn)行了控制性能及節(jié)能性分析。 本論文所開展的主要研究工作有: 首先,總結(jié)了當(dāng)今液壓系統(tǒng)中常用的節(jié)能技術(shù),從傳統(tǒng)液壓系統(tǒng)產(chǎn)生能量損失的原因出發(fā),分析了無節(jié)流損失閥控動(dòng)力單元的實(shí)現(xiàn)原理;利用二位三通高速開關(guān)閥作為先導(dǎo)閥,控制大流量二通插裝閥,組成無節(jié)流損失閥組,給出了插裝閥的選擇依據(jù),并設(shè)計(jì)了滑閥式高壓大流量二位三通高速開關(guān)閥。 然后,建立了二位三通高速開關(guān)閥和二通插裝閥以及能量吸收單元的數(shù)學(xué)模型,并在AMESim中進(jìn)行了驗(yàn)證,利用AMESet開發(fā)了直線式步進(jìn)電機(jī)的子模塊;設(shè)定各模型參數(shù)之后,通過仿真分析了無節(jié)流損失閥控動(dòng)力單元中主閥進(jìn)、出油口壓差以及能量吸收單元的特性,證明了主閥口打開時(shí)無節(jié)流損失,且避免了溢流損失,系統(tǒng)效率在90%以上。 最后,研究了基于無節(jié)流損失閥控動(dòng)力單元的位置控制及力控制,利用四個(gè)無節(jié)流損失閥組控制液壓缸運(yùn)動(dòng),打破了控制閥口之間物理結(jié)構(gòu)上固有的耦合關(guān)系,給出了位置控制及力控制系統(tǒng)的仿真模型與相應(yīng)的控制策略;在位置控制系統(tǒng)中分析了PWM控制頻率、高速開關(guān)閥響應(yīng)頻率對系統(tǒng)控制性能及節(jié)能性的影響;在力控制系統(tǒng)中分析了三種不同控制邏輯下控制性能及節(jié)能性的優(yōu)劣;通過階躍響應(yīng)及正弦響應(yīng)證明了系統(tǒng)能在保證一定的控制精度的同時(shí),可以大幅提高系統(tǒng)效率而達(dá)到節(jié)能的目的。 本論文所進(jìn)行的上述研究內(nèi)容及取得的相應(yīng)結(jié)果,為今后進(jìn)一步開展相關(guān)的實(shí)際應(yīng)用提供了理論上的依據(jù)。
[Abstract]:Compared with mechanical and electric transmission systems, hydraulic system has the advantages of high power density, easy to realize stepless speed regulation and overload protection, and is widely used in industrial control. However, there are a lot of throttling and overflow losses in traditional hydraulic systems. The efficiency of the system is only about 30%. Energy saving has become one of the problems that can not be ignored in the application and development of hydraulic technology nowadays. This paper starts from the angle of reducing throttling loss and overflow loss. A new concept of valve-controlled power unit without throttling loss is proposed, its realization mechanism is studied, a simulation model is established, and the control performance and energy saving of the force control system based on the position of the valve control power unit without throttling loss are analyzed. The main research work carried out in this paper are as follows:. Firstly, the energy saving technology commonly used in hydraulic system is summarized. Based on the reason of energy loss in traditional hydraulic system, the realization principle of valve-controlled power unit without throttling loss is analyzed. The high speed two-position three-way valve is used as the pilot valve to control the large-flow two-way cartridge valve and to form the valve group without throttling loss. The selection basis of the cartridge valve is given, and the sliding valve type high-pressure and large-flow two-position three-way high-speed switch valve is designed. Then, the mathematical models of two-position three-way high-speed switch valve, two-way cartridge valve and energy absorption unit are established and verified in AMESim. The sub-modules of linear stepping motor are developed by using AMESet, and the parameters of each model are set up. The characteristics of the main valve inlet and outlet pressure difference and the energy absorption unit in the valve control power unit without throttling loss are simulated and analyzed. It is proved that there is no throttling loss when the main valve opening and the overflow loss is avoided. The system efficiency is more than 90%. Finally, based on the position control and force control of the valve control power unit without throttling loss, the motion of the hydraulic cylinder is controlled by four valve groups without throttling loss, which breaks the inherent coupling relationship between the physical structure of the control valve port. The simulation model and corresponding control strategy of position control and force control system are given, and the influence of PWM control frequency and high speed switch valve response frequency on system control performance and energy saving are analyzed in the position control system. In the force control system, the advantages and disadvantages of control performance and energy saving under three different control logic are analyzed, and the step response and sinusoidal response prove that the system can guarantee a certain control precision at the same time. It can greatly improve the efficiency of the system and achieve the purpose of energy saving. The above research contents and the corresponding results obtained in this paper provide a theoretical basis for the further development of relevant practical applications in the future.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH134
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 王爽;李志遠(yuǎn);余新e,
本文編號(hào):1554609
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1554609.html
最近更新
教材專著