基于譜峭度的齒輪箱故障特征提取
發(fā)布時(shí)間:2018-02-27 19:06
本文關(guān)鍵詞: 齒輪箱 譜峭度 包絡(luò)分析 階比跟蹤 特征提取 出處:《昆明理工大學(xué)》2011年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:在機(jī)械設(shè)備中,齒輪箱作為改變轉(zhuǎn)速和傳遞動(dòng)力的通用零部件,在各行各業(yè)中得到了廣泛運(yùn)用。齒輪箱工作環(huán)境非常惡劣,齒輪箱部件容易受到損壞而出現(xiàn)故障。因此以齒輪箱作為機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷的研究對(duì)象具有較好的現(xiàn)實(shí)意義。 基于譜峭度的信號(hào)處理方法是近年來(lái)所提出來(lái)的故障特征提取新途徑,目前在故障診斷領(lǐng)域正被廣泛研究。但其在實(shí)際應(yīng)用中還存在各種急需解決的問(wèn)題,如:齒輪箱故障信號(hào)常常湮沒(méi)于強(qiáng)背景噪聲中;基于譜峭度的包絡(luò)分析方法雖然可以自適應(yīng)的確定包絡(luò)參數(shù),但計(jì)算量大;如何將此方法應(yīng)用到齒輪箱升降速過(guò)程的故障診斷中等。 為了解決以上問(wèn)題,本論文利用AR模型對(duì)齒輪局部故障信號(hào)進(jìn)行預(yù)白化,來(lái)增強(qiáng)齒輪沖擊故障信號(hào)。并提出了一種基于復(fù)平移Morlet小波和譜峭度的齒輪故障診斷的改進(jìn)包絡(luò)分析方法,該方法利用相鄰不同級(jí)濾波器組中具有交疊頻帶的濾波器濾波和譜峭度計(jì)算結(jié)果的相關(guān)性,提出了一種改進(jìn)的濾波器構(gòu)建方法,該改進(jìn)方法繼承了可根據(jù)譜峭度值自適應(yīng)確定共振解調(diào)最佳帶通濾波器參數(shù)的優(yōu)點(diǎn),同時(shí)又明顯的減少所構(gòu)建帶通濾波器的數(shù)量,顯著降低了相關(guān)計(jì)算量,提高了計(jì)算效率。齒輪故障仿真結(jié)果驗(yàn)證了本方法的可行性。 同時(shí),通過(guò)對(duì)旋轉(zhuǎn)機(jī)械變速運(yùn)行工況的齒輪箱振動(dòng)研究,提出了一種基于譜峭度的滾動(dòng)軸承故障包絡(luò)階比跟蹤分析方法。該方法利用旋轉(zhuǎn)機(jī)械運(yùn)行過(guò)程中滾動(dòng)軸承故障引起的沖擊性振動(dòng)會(huì)激起其周?chē)Y(jié)構(gòu)共振的原理,應(yīng)用譜峭度方法自適應(yīng)地確定優(yōu)化的共振解調(diào)帶通濾波中心頻率和濾波帶寬,進(jìn)而通過(guò)共振解調(diào)算法獲得包含軸承故障初始階段振動(dòng)特征的包絡(luò)信號(hào),進(jìn)而通過(guò)階比跟蹤技術(shù)獲得消除了頻率模糊的階比譜,實(shí)現(xiàn)對(duì)旋轉(zhuǎn)機(jī)械變速運(yùn)行工況下的滾動(dòng)軸承故障診斷。仿真和測(cè)試試驗(yàn)結(jié)果驗(yàn)證了本方法的有效性。
[Abstract]:In mechanical equipment, gearbox is widely used in various industries as a universal component to change rotational speed and transfer power. The gearbox working environment is very bad, The gearbox parts are liable to be damaged and malfunction, so it is of great practical significance to take the gearbox as the research object of mechanical equipment condition monitoring and fault diagnosis. The signal processing method based on spectral kurtosis is a new method of fault feature extraction proposed in recent years, which is widely studied in the field of fault diagnosis. However, there are still many problems that need to be solved in practical application. For example, the gearbox fault signal is often buried in the strong background noise, the envelope analysis method based on spectral kurtosis can determine the envelope parameter adaptively, but the calculation is heavy. How to apply this method to the fault diagnosis of gear box speed rise and down process is moderate. In order to solve the above problems, this paper uses AR model to prewhiten the local fault signals of gears. An improved envelope analysis method for gear fault diagnosis based on complex translation Morlet wavelet and spectral kurtosis is proposed. Based on the correlation between the filter filter with overlapping frequency band and the result of spectral kurtosis calculation, an improved filter construction method is proposed in this method. The improved method inherits the advantages of adaptively determining the optimal parameters of the resonant demodulation bandpass filter according to the spectral kurtosis value, at the same time, it obviously reduces the number of the bandpass filters constructed, and significantly reduces the amount of calculation. The simulation results of gear faults verify the feasibility of this method. At the same time, the vibration of the gearbox under the variable speed operation condition of the rotating machinery is studied. Based on spectral kurtosis, a fault envelope order tracking analysis method for rolling bearings is proposed, which makes use of the principle that the impact vibration caused by rolling bearing faults during the operation of rotating machinery will arouse the resonance of its surrounding structures. The spectral kurtosis method is used to adaptively determine the center frequency and the filtering bandwidth of the optimized resonance demodulation bandpass filter, and then the envelope signal which includes the vibration characteristics of the initial stage of the bearing fault is obtained by the resonance demodulation algorithm. By using order tracking technique, the order spectrum of frequency ambiguity is eliminated, and the fault diagnosis of rolling bearing under variable speed operation condition of rotating machinery is realized. The simulation and test results verify the effectiveness of this method.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類(lèi)號(hào)】:TH165.3
【引證文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 黃志東;基于譜峭度的滾動(dòng)軸承故障診斷方法研究[D];華南理工大學(xué);2013年
,本文編號(hào):1543935
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1543935.html
最近更新
教材專著