通機(jī)產(chǎn)品售后質(zhì)量損失預(yù)測(cè)方法及支持系統(tǒng)研究與應(yīng)用
本文關(guān)鍵詞: 通機(jī)產(chǎn)品 質(zhì)量損失 預(yù)測(cè)方法 支持系統(tǒng) 出處:《重慶大學(xué)》2011年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:通機(jī)產(chǎn)品具有結(jié)構(gòu)復(fù)雜、種類(lèi)繁多、客戶量大面廣等特點(diǎn),且產(chǎn)品在使用過(guò)程中一旦出現(xiàn)質(zhì)量問(wèn)題將對(duì)通機(jī)制造企業(yè)造成較為嚴(yán)重的有形和無(wú)形質(zhì)量損失。廣大通機(jī)制造企業(yè)由于缺乏售后質(zhì)量損失預(yù)測(cè)方法,不能對(duì)售后質(zhì)量損失進(jìn)行評(píng)估及預(yù)警,經(jīng)常導(dǎo)致企業(yè)的售后質(zhì)量損失不能得到有效控制。因此,廣大通機(jī)制造企業(yè)迫切需要一套售后質(zhì)量損失預(yù)測(cè)方法及其支持系統(tǒng)對(duì)售后質(zhì)量損失進(jìn)行快速的評(píng)估及預(yù)警,從而實(shí)現(xiàn)質(zhì)量損失有效控制。本文結(jié)合通機(jī)制造企業(yè)進(jìn)行售后質(zhì)量損失控制的困難和需求,對(duì)通機(jī)產(chǎn)品售后質(zhì)量損失預(yù)測(cè)方法及其支持系統(tǒng)進(jìn)行了探討和研究。 首先,在分析了通機(jī)產(chǎn)品售后質(zhì)量損失控制特點(diǎn)、現(xiàn)狀和需求的基礎(chǔ)上,通過(guò)分析影響通機(jī)產(chǎn)品售后質(zhì)量損失的影響因素,建立了通機(jī)產(chǎn)品售后質(zhì)量損失的評(píng)價(jià)指標(biāo)體系,并采用層次分析法確定評(píng)價(jià)指標(biāo)權(quán)重;在確定了評(píng)價(jià)指標(biāo)體系和權(quán)重的基礎(chǔ)上,提出了基于模糊綜合評(píng)判和BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)的售后質(zhì)量損失評(píng)估和預(yù)警方法。 在以上通機(jī)產(chǎn)品售后質(zhì)量損失評(píng)估及預(yù)警關(guān)鍵技術(shù)研究的基礎(chǔ)上,針對(duì)廣大通機(jī)制造企業(yè)快速地進(jìn)行售后質(zhì)量損失評(píng)估和預(yù)警的需求,研究了一種可支持質(zhì)量損失快速評(píng)估及預(yù)警控制分析的通機(jī)產(chǎn)品售后質(zhì)量損失預(yù)測(cè)支持系統(tǒng),構(gòu)建了系統(tǒng)的體系結(jié)構(gòu)、功能結(jié)構(gòu)和運(yùn)行模式。 最后,基于以上研究成果,設(shè)計(jì)和開(kāi)發(fā)了一套通機(jī)產(chǎn)品售后質(zhì)量損失預(yù)測(cè)支持系統(tǒng),并在重慶一通機(jī)制造企業(yè)進(jìn)行了實(shí)施和應(yīng)用,取得了良好應(yīng)用效果。
[Abstract]:Tongji products have the characteristics of complex structure, various types, large number of customers, and so on. Once the quality problem occurs in the process of using the product, it will cause serious loss of tangible and intangible quality to the manufacturing enterprises of the general machinery industry. Due to the lack of prediction methods for the after-sale quality loss of the general machinery manufacturing enterprises, The loss of after-sales quality can not be evaluated and forewarned, which often leads to the loss of after-sale quality of the enterprise can not be effectively controlled. There is an urgent need for a set of after-sale quality loss prediction methods and their supporting systems for rapid evaluation and early warning of after-sale quality loss in the general machinery manufacturing enterprises. In order to realize the effective control of the quality loss, this paper discusses and studies the prediction method and the supporting system of the after-sale quality loss of the machine products in combination with the difficulties and requirements of the after-sale quality loss control in the general machinery manufacturing enterprises. First of all, on the basis of analyzing the characteristics, present situation and demand of the quality loss control after sale of the product, the paper establishes the evaluation index system of the quality loss after the sale of the product through analyzing the influencing factors of the quality loss after the sale of the product. On the basis of determining the evaluation index system and weight, the evaluation index weight is determined by analytic hierarchy process (AHP), and the method of after-sale quality loss assessment and early warning based on fuzzy comprehensive evaluation and BP(Back propagation neural network is put forward. On the basis of the research on the key technology of after-sale quality loss assessment and early warning of the above machinery products, aiming at the demand of rapid after-sale quality loss assessment and early warning for the vast number of machinery manufacturing enterprises, An after-sale quality loss prediction and support system for mechanical products is studied, which can support rapid assessment of quality loss and early warning control analysis. The architecture, function structure and operation mode of the system are constructed. Finally, based on the above research results, a set of after-sale quality loss prediction and support system of the machine is designed and developed, and it has been implemented and applied in Chongqing one-pass machine manufacturing enterprise, and good application results have been obtained.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類(lèi)號(hào)】:TH186
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳希祥;邱靜;劉冠軍;;基于層次分析法與模糊綜合評(píng)判的測(cè)試設(shè)備選擇方法研究[J];兵工學(xué)報(bào);2010年01期
2 陳亞哲;劉桂珍;劉挺;聞邦椿;;基于熵權(quán)的產(chǎn)品廣義質(zhì)量模糊綜合評(píng)價(jià)[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
3 劉陸洲;肖建;王嵩;;良好非線性模型辨識(shí)及其內(nèi)?刂芠J];電機(jī)與控制學(xué)報(bào);2009年04期
4 溫勝?gòu)?qiáng);周鵬飛;康海貴;;基于灰色理論與BP神經(jīng)網(wǎng)絡(luò)的交通運(yùn)輸量組合預(yù)測(cè)研究[J];大連理工大學(xué)學(xué)報(bào);2010年04期
5 劉勁松;田春霞;張士宏;姜年祥;張金利;;SPC技術(shù)在銅管生產(chǎn)線質(zhì)量管理中的應(yīng)用[J];鍛壓技術(shù);2007年06期
6 董欣;劉志斌;張鴻飛;季曉艷;;改進(jìn)層次分析法對(duì)提金工藝風(fēng)險(xiǎn)權(quán)重系統(tǒng)確定[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年S1期
7 賀志勇;鄭偉;;基于BP神經(jīng)網(wǎng)絡(luò)的深基坑變形預(yù)測(cè)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年10期
8 薛正華;董小社;李炳毅;廖詩(shī)華;;基于BP神經(jīng)網(wǎng)絡(luò)的集群負(fù)載預(yù)測(cè)器[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年S2期
9 盧曉春,阮鋒;產(chǎn)品質(zhì)量管理方法研究述評(píng)[J];機(jī)床與液壓;2004年03期
10 羅書(shū)強(qiáng),何玉林;網(wǎng)絡(luò)化制造模式下的質(zhì)量管理決策支持系統(tǒng)[J];計(jì)算機(jī)集成制造系統(tǒng)-CIMS;2004年02期
相關(guān)博士學(xué)位論文 前1條
1 何毅;基于BP神經(jīng)網(wǎng)絡(luò)電容法刨花含水率測(cè)試儀的研究與開(kāi)發(fā)[D];南京林業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前5條
1 尹勝;車(chē)用空調(diào)類(lèi)制造企業(yè)裝配車(chē)間生產(chǎn)作業(yè)管理系統(tǒng)研究及應(yīng)用[D];重慶大學(xué);2008年
2 張劍鳴;基于J2EE的銷(xiāo)售項(xiàng)目管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京郵電大學(xué);2009年
3 陳云蓉;基于BP神經(jīng)網(wǎng)絡(luò)的銀行業(yè)安全預(yù)警實(shí)證研究[D];中南大學(xué);2008年
4 盧佳;基于模糊綜合評(píng)價(jià)方法的中小型制造企業(yè)柔性管理綜合評(píng)價(jià)[D];南京理工大學(xué);2010年
5 李爽;基于BP神經(jīng)網(wǎng)絡(luò)的中小企業(yè)財(cái)務(wù)預(yù)警研究[D];山東大學(xué);2010年
,本文編號(hào):1507502
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1507502.html