基于免疫危險(xiǎn)理論的液壓泵故障診斷方法研究
本文關(guān)鍵詞: 液壓泵 故障診斷 免疫危險(xiǎn)理論 特征選擇 包絡(luò)解調(diào) 小波簇 出處:《燕山大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
【摘要】:液壓泵一直被液壓工程人員形象比喻為液壓系統(tǒng)的心臟,它的健康狀況將直接影響整個(gè)液壓生產(chǎn)制造設(shè)備的正常工作。液壓泵出現(xiàn)故障,輕者致使液壓生產(chǎn)制造設(shè)備部分功能缺失,重則將造成嚴(yán)重的、災(zāi)難性的安全生產(chǎn)事故。因此研究液壓泵的狀態(tài)監(jiān)測(cè)和故障診斷技術(shù)就顯得尤為重要。目前,故障診斷技術(shù)正朝著自動(dòng)化、智能化方向發(fā)展。受生物免疫危險(xiǎn)理論模型的啟發(fā),本文提出基于免疫危險(xiǎn)理論的特征選擇算法實(shí)現(xiàn)了對(duì)具有眾多信息的原始高維特征向量的降維。本文還應(yīng)用免疫危險(xiǎn)理論原理開(kāi)發(fā)了具有學(xué)習(xí)、聚類、記憶特性的故障診斷算法,并將這一算法應(yīng)用于液壓泵的故障診斷中。 免疫危險(xiǎn)理論應(yīng)用于故障診斷領(lǐng)域的案例并不是很多,目前國(guó)內(nèi)外學(xué)者更多將這一理論應(yīng)用于信息安全、機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘等領(lǐng)域。本文基于生物免疫系統(tǒng)危險(xiǎn)理論模型識(shí)別機(jī)制,應(yīng)用Matlab軟件分別開(kāi)發(fā)了具有能夠降維高維數(shù)據(jù)的特征選擇算法和故障診斷算法。特征選擇算法將具有眾多信息的高維特征向量降為低維特征向量,大大減少了后續(xù)故障診斷的時(shí)間。故障診斷算法將學(xué)習(xí)樣本看作為抗原,,并通過(guò)抗體(隨機(jī)檢測(cè)器)對(duì)抗原(學(xué)習(xí)樣本)的學(xué)習(xí)形成記憶抗體種群(成熟檢測(cè)器),記憶抗體種群(成熟檢測(cè)器)將識(shí)別抗原(測(cè)試樣本)的再次侵襲。 為驗(yàn)證本文算法的有效性,本文以實(shí)驗(yàn)室材料實(shí)驗(yàn)機(jī)的軸向柱塞液壓泵作為診斷對(duì)象。應(yīng)用加速度傳感器和NI數(shù)據(jù)采集卡采集液壓泵端蓋振動(dòng)信號(hào),運(yùn)用細(xì)化譜分析技術(shù)分析與確定液壓泵各狀態(tài)原始采集振動(dòng)信號(hào)的共振頻帶范圍;采用基于小波簇的包絡(luò)解調(diào)方法對(duì)確定的共振段信號(hào)進(jìn)行包絡(luò)解調(diào);將解調(diào)所得的包絡(luò)信號(hào)進(jìn)行2層小波包分解與重構(gòu),提取每一子帶重構(gòu)信號(hào)的時(shí)域、頻域和時(shí)頻域信息作原始特征向量;選擇目標(biāo)函數(shù)(各狀態(tài)樣本類間散度矩陣的跡和樣本類內(nèi)散度矩陣的跡的比值)作為特征選擇后特征子集的分類性能評(píng)判函數(shù),應(yīng)用本文提出的基于免疫危險(xiǎn)理論的特征選擇算法,選擇出了目標(biāo)函數(shù)值最大時(shí)所對(duì)應(yīng)的特征向量;最后,采用基于免疫危險(xiǎn)理論的故障診斷算法對(duì)特征選擇后的學(xué)習(xí)樣本(抗原)進(jìn)行學(xué)習(xí),并生成最終的各狀態(tài)成熟檢測(cè)器(記憶抗體群)以便完成對(duì)測(cè)試樣本(抗原)的狀態(tài)監(jiān)測(cè)和故障診斷。通過(guò)Matlab軟件的程序仿真,驗(yàn)證了基于免疫危險(xiǎn)理論液壓泵
[Abstract]:The hydraulic pump has always been likened to the heart of the hydraulic system by hydraulic engineers. Its health will directly affect the normal operation of the whole hydraulic production and manufacturing equipment. Some of the functions of hydraulic production and manufacturing equipment are missing and heavy will cause serious and catastrophic accidents in production safety. Therefore, it is very important to study the condition monitoring and fault diagnosis technology of hydraulic pump. At present, it is very important to study the condition monitoring and fault diagnosis technology of hydraulic pump. Fault diagnosis technology is developing towards automation and intelligence. Inspired by the biological immune hazard theory model, In this paper, a feature selection algorithm based on immune hazard theory is proposed to reduce the dimension of the original high dimensional feature vector with a lot of information. The algorithm of fault diagnosis based on memory characteristic is applied to the fault diagnosis of hydraulic pump. There are not many cases in which immune hazard theory is applied in the field of fault diagnosis. At present, many scholars at home and abroad apply this theory to information security and machine learning. Data mining and other fields. This paper based on the biological immune system hazard theory model recognition mechanism, The feature selection algorithm and fault diagnosis algorithm are developed by using Matlab software. The feature selection algorithm reduces the high dimensional feature vector with a lot of information to the low dimensional feature vector. It greatly reduces the time of subsequent fault diagnosis. The fault diagnosis algorithm treats the learning samples as antigens. Furthermore, the memory antibody population (maturation detector) and memory antibody population (maturation detector) will recognize the re-invasion of antigen (test sample) through the learning of antigen (learning sample) by antibody (random detector). In order to verify the validity of this algorithm, the axial plunger hydraulic pump of the laboratory material experiment machine is used as the diagnostic object. The vibration signals of the end cover of the hydraulic pump are collected by using the accelerometer and NI data acquisition card. The resonance frequency band range of the original vibration signal collected by hydraulic pump is analyzed and determined by the technique of thinning spectrum analysis, and the envelope demodulation method based on wavelet cluster is used to demodulate the signal in the determined resonance section. The envelope signal obtained by demodulation is decomposed and reconstructed by two-layer wavelet packet, and the time domain, frequency domain and time-frequency domain information of each sub-band reconstruction signal is extracted as the original eigenvector. The objective function (the ratio of the trace of the scatter matrix between each state sample class and the trace of the divergence matrix within the sample class) is selected as the classification performance evaluation function of the feature subset after feature selection. Using the feature selection algorithm based on immune hazard theory proposed in this paper, the feature vectors corresponding to the maximum value of the objective function are selected. A fault diagnosis algorithm based on immune hazard theory is used to study the learning samples (antigens) after feature selection. The final state maturation detector (memory antibody group) was generated in order to complete the state monitoring and fault diagnosis of the test sample (antigen). The simulation of Matlab software proved that the hydraulic pump based on immune hazard theory was based on the immune hazard theory.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH137.51;TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉紅梅;王少萍;歐陽(yáng)平超;;基于小波包和Elman神經(jīng)網(wǎng)絡(luò)的液壓泵故障診斷[J];北京航空航天大學(xué)學(xué)報(bào);2007年01期
2 卜華龍;夏靜;韓俊波;;特征選擇算法綜述及進(jìn)展研究[J];巢湖學(xué)院學(xué)報(bào);2008年06期
3 王肇捷,黃文劍;立體匹配的免疫算法[J];電腦與信息技術(shù);2001年04期
4 郭朝有;歐陽(yáng)光耀;李雁飛;;基于人工免疫系統(tǒng)的電路小樣本故障診斷方法[J];電子測(cè)量與儀器學(xué)報(bào);2010年05期
5 曾璐 ,陸榮雙;基于LabVIEW的數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)[J];電子技術(shù);2004年12期
6 李建華;;設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷技術(shù)綜述[J];廣東化工;2009年12期
7 韓中合;王峰;郝曉冬;劉帥;;基于人工免疫算法的機(jī)組振動(dòng)故障診斷方法[J];華北電力大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
8 劉紅梅;王少萍;歐陽(yáng)平超;;基于RBF神經(jīng)網(wǎng)絡(luò)的液壓位置伺服系統(tǒng)故障診斷(英文)[J];Chinese Journal of Aeronautics;2006年04期
9 姜萬(wàn)錄;宋麗娜;楊少輝;姚志飛;;小波包絡(luò)新方法在液壓泵故障診斷中的應(yīng)用[J];測(cè)控技術(shù);2008年08期
10 牛慧峰;姜萬(wàn)錄;;基于人工免疫系統(tǒng)的網(wǎng)絡(luò)化智能故障診斷展望[J];機(jī)床與液壓;2007年11期
相關(guān)博士學(xué)位論文 前1條
1 高英杰;軋機(jī)AGC液壓系統(tǒng)故障診斷技術(shù)的研究[D];燕山大學(xué);2000年
本文編號(hào):1497454
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1497454.html