液力偶合器流場(chǎng)仿真分析方法及其力矩系數(shù)研究
本文關(guān)鍵詞: 液力偶合器 流場(chǎng)仿真 力矩系數(shù)修正 原始特性 試驗(yàn)研究 出處:《中國(guó)艦船研究院》2011年碩士論文 論文類型:學(xué)位論文
【摘要】:液力偶合器是一種利用液體動(dòng)能進(jìn)行能量傳遞的液力傳動(dòng)機(jī)械。其具有柔性傳動(dòng)、減緩沖擊、輕載啟動(dòng)、過載保護(hù)、隔離扭振、協(xié)調(diào)多動(dòng)力機(jī)均衡驅(qū)動(dòng)等優(yōu)異功能,廣泛應(yīng)用于船舶、冶金、發(fā)電、礦山等重型工業(yè)。 本文通過理論分析和仿真技術(shù)研究,建立了液力偶合器流場(chǎng)仿真分析方法,對(duì)液力偶合器力矩系數(shù)λ_B進(jìn)行理論研究,結(jié)合流場(chǎng)仿真結(jié)果,歸納總結(jié)λ_B系數(shù)相對(duì)于轉(zhuǎn)速n_B的變化規(guī)律,并應(yīng)用JO65XR型液力偶合器進(jìn)行了試驗(yàn)驗(yàn)證。主要研究?jī)?nèi)容如下。 (1)液力偶合器流場(chǎng)仿真分析方法。首先研究了現(xiàn)今流場(chǎng)仿真分析技術(shù),包括湍流模型、網(wǎng)格生成技術(shù)等,形成液力偶合器流場(chǎng)仿真分析方法指導(dǎo)流程。然后對(duì)液力偶合器的工況和流場(chǎng)做出一定的假設(shè),以方便幾何建模。結(jié)合STAR-CCM+軟件,深入研究液力偶合器三維流場(chǎng)建模及仿真的方法與過程,主要包括幾何模型、計(jì)算網(wǎng)格模型、物理模型設(shè)置、邊界條件、收斂準(zhǔn)則、結(jié)果顯示等。最后基于液力偶合器額定工況下流場(chǎng)的仿真結(jié)果,本文分析了液力偶合器整體壁面、軸面、Interface面的流場(chǎng)特性,揭示了流場(chǎng)速度和壓力變化的分布情況,對(duì)其內(nèi)部流場(chǎng)特性及生成原因進(jìn)行了詳細(xì)分析。 本文應(yīng)用JO65XR型液力偶合器進(jìn)行驗(yàn)證試驗(yàn),繪制了不同滑差下的仿真曲線和試驗(yàn)曲線,兩條曲線吻合一致,額定工況下仿真值與試驗(yàn)值的平均誤差為6.53%,最大誤差為10.95%,驗(yàn)證了本文提出的液力偶合器流場(chǎng)仿真分析方法是可行的。 (2)液力偶合器力矩系數(shù)λ_B的修正。根據(jù)多工況流場(chǎng)仿真分析的結(jié)果——當(dāng)滑差i不變時(shí)力矩系數(shù)λ_B會(huì)隨著轉(zhuǎn)速n_B不同而變化,本文對(duì)液力偶合器力矩系數(shù)λ_B進(jìn)行理論研究,獲得液力偶合器λ_B = f ( i ,Re)或λ_B = f ( i ,n_B)的函數(shù)關(guān)系,并進(jìn)一步說明力矩系數(shù)λ_B并非如通常認(rèn)識(shí)的那樣僅和滑差i有關(guān),而是受到滑差i和雷諾數(shù)Re(或者轉(zhuǎn)速n_B )的共同影響。然后進(jìn)行液力偶合器多工況輸出扭矩仿真,歸納總結(jié)力矩系數(shù)λ_B與轉(zhuǎn)速n_B的規(guī)律,對(duì)λ_B提出一套與n_B相關(guān)的修正系數(shù),使其滿足λB = f ( i ,n_B)的要求。 根據(jù)試驗(yàn)結(jié)果,繪制了試驗(yàn)曲線、修正曲線和未修正曲線,修正曲線明顯比未修正曲線更接近試驗(yàn)曲線,修正系數(shù)能夠反應(yīng)出轉(zhuǎn)速n_B對(duì)力矩系數(shù)λ_B的影響趨勢(shì),修正前平均誤差為10.36%,最大誤差為15.93%,而修正后平均誤差降為6.08%,最大誤差降為10.88%。從而驗(yàn)證了液力偶合器λ_B系數(shù)修正理論的正確性。 本文的液力偶合器流場(chǎng)仿真分析方法應(yīng)用于液力偶合器設(shè)計(jì)之中,可減少研制樣機(jī)及試驗(yàn)的工作量,達(dá)到省時(shí)和省力的目的。本文對(duì)液力偶合器力矩系數(shù)λ_B的修正,進(jìn)一步提高了對(duì)液力偶合器特性的認(rèn)識(shí),對(duì)提高其設(shè)計(jì)和控制精度具有指導(dǎo)作用和實(shí)用價(jià)值。
[Abstract]:Hydraulic coupler is a kind of hydraulic transmission machinery which uses liquid kinetic energy to transfer energy. It has flexible transmission, slow impact, light load start, overload protection and isolation of torsional vibration. It is widely used in heavy industry, such as ship, metallurgy, power generation, mining and so on. Based on the theoretical analysis and simulation technology, a simulation analysis method for fluid field of hydraulic coupling is established in this paper. The torque coefficient 位 B of hydraulic coupling is studied theoretically, and combined with the result of flow field simulation. The variation law of 位 _ S _ B coefficient relative to rotational speed _ n _ B is summarized and tested with JO65XR type hydraulic coupler. The main contents are as follows. Firstly, the current flow field simulation and analysis techniques, including turbulence model, mesh generation technology and so on, are studied. The flow field simulation analysis method of hydraulic coupling is formed to guide the flow. Then the working conditions and flow field of hydraulic coupling are hypothesized in order to facilitate geometric modeling. Combined with STAR-CCM software. The methods and processes of 3D flow field modeling and simulation of hydraulic coupling are deeply studied, including geometric model, computational grid model, physical model setting, boundary condition and convergence criterion. The results show that. Finally, based on the simulation results of the flow field under the rated working conditions of the hydraulic coupling, the flow field characteristics of the integral wall and axial surface of the hydraulic coupling are analyzed in this paper. The distribution of the velocity and pressure variation of the flow field is revealed, and the characteristics of the internal flow field and the causes of its formation are analyzed in detail. In this paper, the JO65XR type hydraulic coupling is used to carry out the verification test, and the simulation curve and the test curve under different slippage are drawn, and the two curves are consistent with each other. The average error between the simulated value and the experimental value is 6.53 and the maximum error is 10.95 under rated working conditions. The method proposed in this paper is proved to be feasible. 2) Modification of torque coefficient 位 B of hydraulic coupling. According to the result of simulation analysis of multi-condition flow field, the torque coefficient 位 B will change with the speed nb when the slip difference I is constant. In this paper, the torque coefficient 位 _ s _ B of hydraulic couplings is studied theoretically, and the functional relations of 位 _ s _ p _ B = f (I _ Ree) or 位 _ s _ B = f (I / n _ B) are obtained. Furthermore, it is shown that moment coefficient 位 B is not only related to slip I as is generally known. It is influenced by slip I and Reynolds number Re. then the torque output simulation of hydraulic coupling is carried out, and the law of torque coefficient 位 B and rotational speed NSP B is summarized. In this paper, a set of correction coefficients related to 位 _ s _ B are presented to satisfy the requirements of 位 _ B = f (I / n _ s _ B). According to the test results, the test curve, the modified curve and the uncorrected curve are drawn. The modified curve is more close to the test curve than the uncorrected curve. The correction coefficient can reflect the influence trend of the speed NSP B on the torque coefficient 位 B. The average error before the correction is 10.36 and the maximum error is 15.93%. The average error is reduced to 6.08 and the maximum error is reduced to 10.88, which verifies the correctness of the modified theory of 位 _ B coefficient of hydraulic coupling. In this paper, the flow field simulation analysis method of hydraulic coupling is applied to the design of hydraulic coupling, which can reduce the workload of developing prototype and testing. In order to save time and effort, the torque coefficient 位 B of hydraulic coupler is modified in this paper, which further improves the understanding of the characteristics of hydraulic coupler. It has guiding function and practical value to improve its design and control precision.
【學(xué)位授予單位】:中國(guó)艦船研究院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH137.331
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 冀海;周廣明;馬曉楓;秦緒情;唐守生;;液力偶合器精確控制下原始特性修正[J];車輛與動(dòng)力技術(shù);2009年03期
2 閆國(guó)軍;董泳;吳劍威;;液力變矩器部分充液特性研究及應(yīng)用[J];工程機(jī)械;2007年05期
3 楊威嵬;吳凡;虞俊;;液力偶合器流場(chǎng)的技術(shù)仿真[J];機(jī)械設(shè)計(jì)與研究;2009年02期
4 王永生,丁江明;液力偶合器通用外特性的數(shù)學(xué)建模[J];機(jī)械工程學(xué)報(bào);2005年04期
5 田華,葛安林,馬文星;液力變矩器的內(nèi)流場(chǎng)數(shù)值分析[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2005年04期
6 何延?xùn)|;馬文星;劉春寶;;液力偶合器部分充液流場(chǎng)數(shù)值模擬與特性計(jì)算[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2009年05期
7 過學(xué)迅,鄭慕僑;液力變矩器流場(chǎng)研究的方法和進(jìn)展[J];汽車工程;1995年03期
8 張揚(yáng)軍,陳乃祥,曹智鵬;流體機(jī)械粘性流場(chǎng)的數(shù)值模擬方法[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);1997年03期
相關(guān)博士學(xué)位論文 前1條
1 何延?xùn)|;基于CFD的大功率調(diào)速型液力偶合器設(shè)計(jì)[D];吉林大學(xué);2009年
相關(guān)碩士學(xué)位論文 前9條
1 齊迎春;數(shù)值模擬技術(shù)在液力變矩器流場(chǎng)分析中的應(yīng)用[D];吉林大學(xué);2004年
2 余鑫;汽車液力變矩器內(nèi)流場(chǎng)的數(shù)值分析[D];吉林大學(xué);2005年
3 李雪松;車輛液力減速器三維流場(chǎng)分析與特性計(jì)算[D];吉林大學(xué);2006年
4 宋月蘭;多層槳攪拌槽內(nèi)氣—液兩相流的數(shù)值模擬[D];北京化工大學(xué);2006年
5 許濤;液力變矩器三維流場(chǎng)仿真計(jì)算[D];武漢理工大學(xué);2006年
6 吳開府;液力偶合器流場(chǎng)數(shù)值模擬及其分離流動(dòng)控制研究[D];吉林大學(xué);2007年
7 吳波;液力變矩器的三維流場(chǎng)仿真計(jì)算[D];吉林大學(xué);2008年
8 陳見;基于三維流動(dòng)計(jì)算的液力減速器性能仿真研究[D];武漢理工大學(xué);2008年
9 王永權(quán);液力偶合器葉輪與流體的流固耦合模擬與分析[D];吉林大學(xué);2009年
,本文編號(hào):1466018
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1466018.html