金屬帶無(wú)級(jí)變速器行星換向機(jī)構(gòu)非線(xiàn)性動(dòng)力學(xué)分析
發(fā)布時(shí)間:2018-01-19 02:27
本文關(guān)鍵詞: 金屬帶無(wú)級(jí)變速器 行星換向機(jī)構(gòu) 離合器控制 齒輪非線(xiàn)性動(dòng)力學(xué) 出處:《湖南大學(xué)》2012年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:行星齒輪傳動(dòng)系統(tǒng)具有結(jié)構(gòu)緊湊、傳動(dòng)效率高等優(yōu)點(diǎn),被廣泛應(yīng)用于汽車(chē)、航空、船舶、風(fēng)力發(fā)電等各個(gè)領(lǐng)域。但因系統(tǒng)內(nèi)部存在復(fù)雜的振動(dòng)問(wèn)題,造成過(guò)大的噪聲及動(dòng)載荷,嚴(yán)重危害傳動(dòng)系統(tǒng)本身的可靠性。研究指出,行星齒輪傳動(dòng)系統(tǒng)是典型的自激振動(dòng)系統(tǒng),內(nèi)部激勵(lì)主要有時(shí)變嚙合剛度、綜合嚙合誤差、嚙入嚙出沖擊等。另外,由于齒側(cè)間隙引起齒輪脫嚙及沖擊載荷等問(wèn)題,行星齒輪傳動(dòng)系統(tǒng)具有強(qiáng)非線(xiàn)性,以及復(fù)雜的非線(xiàn)性動(dòng)力學(xué)表現(xiàn),如分岔、混沌等。故圍繞振動(dòng)特性分析的行星齒輪傳動(dòng)系統(tǒng)非線(xiàn)性動(dòng)力學(xué)問(wèn)題一直是業(yè)內(nèi)的研究焦點(diǎn)。 在金屬帶無(wú)級(jí)變速器(CVT)傳動(dòng)系統(tǒng)中,行星換向機(jī)構(gòu)是關(guān)鍵零部件之一。通過(guò)多片濕式離合器的控制,該機(jī)構(gòu)可實(shí)現(xiàn)汽車(chē)的倒擋起步及行駛。在起步過(guò)程中,行星換向機(jī)構(gòu)所傳遞的扭矩、轉(zhuǎn)速均處于動(dòng)態(tài)變化的過(guò)程,即非穩(wěn)態(tài),因此,行星換向機(jī)構(gòu)在克服內(nèi)部激勵(lì)的同時(shí),也承受著外部激勵(lì)的襲擾。再者,外部激勵(lì)中的轉(zhuǎn)速同樣會(huì)影響內(nèi)部激勵(lì)中的時(shí)變嚙合剛度、綜合嚙合誤差等因素,即內(nèi)、外激勵(lì)處于耦合作用狀態(tài),并非簡(jiǎn)單地線(xiàn)性疊加,這將導(dǎo)致行星齒輪系統(tǒng)故障分析的難度。 鑒于在CVT國(guó)產(chǎn)化中,行星換向機(jī)構(gòu)在倒擋疲勞試驗(yàn)期間經(jīng)常出現(xiàn)振動(dòng)、噪聲、斷齒等故障,嚴(yán)重削弱了CVT產(chǎn)品的壽命及可靠性。本文以齒輪系統(tǒng)動(dòng)力學(xué)為理論基礎(chǔ),綜合考慮時(shí)變嚙合剛度、綜合嚙合誤差、齒側(cè)間隙等因素,建立了行星換向機(jī)構(gòu)的非線(xiàn)性耦合運(yùn)動(dòng)微分方程。采用變步長(zhǎng)4-5階Runge-Kutta算法對(duì)其進(jìn)行數(shù)值求解。根據(jù)仿真結(jié)果繪制了系統(tǒng)分岔圖,并結(jié)合典型工況下的動(dòng)載荷圖、相圖、龐加萊截面圖和FFT頻譜圖,在頻域和時(shí)域范圍內(nèi)系統(tǒng)地分析了系統(tǒng)運(yùn)動(dòng)狀態(tài)隨內(nèi)、外激勵(lì)參數(shù)的演變歷程。針對(duì)行星換向機(jī)構(gòu)可能出現(xiàn)的混沌狀態(tài),引入混沌時(shí)間序列分析理論計(jì)算最大Lyapunov指數(shù),對(duì)系統(tǒng)是否處于混沌狀態(tài)進(jìn)行判定。 最后,以齒側(cè)間隙為切入點(diǎn),對(duì)行星換向機(jī)構(gòu)進(jìn)行性能改進(jìn)試驗(yàn),以驗(yàn)證理論分析結(jié)果。試驗(yàn)表明,,齒側(cè)間隙過(guò)大時(shí),行星換向機(jī)構(gòu)噪聲大、斷齒故障頻發(fā),減少齒側(cè)間隙可有效降低系統(tǒng)振動(dòng),但保留合理的齒側(cè)間隙可實(shí)現(xiàn)行星架浮動(dòng)均載,防止因不均載導(dǎo)致斷齒問(wèn)題。
[Abstract]:Planetary gear transmission system has the advantages of compact structure, high transmission efficiency and so on. It is widely used in automobile, aviation, ship, wind power generation and other fields, but there are complex vibration problems in the system. It is pointed out that the planetary gear transmission system is a typical self-excited vibration system, and the internal excitation is mainly time-varying meshing stiffness. In addition, the planetary gear transmission system has strong nonlinearity and complex nonlinear dynamic performance due to the problems of gear degnamping and impact load caused by tooth side clearance. Such as bifurcation, chaos and so on. Therefore, the nonlinear dynamics of planetary gear transmission system around vibration characteristics analysis has been the focus of the industry. In the CVT transmission system, the planetary reversing mechanism is one of the key parts. In the starting process, the torque and speed transmitted by the planetary commutator are in the process of dynamic change, that is, non-steady state, so. The planetary reversing mechanism not only overcomes the internal excitation, but also bears the perturbing of the external excitation. Furthermore, the rotational speed in the external excitation will also affect the time-varying meshing stiffness and the comprehensive meshing error in the internal excitation. That is, the internal and external excitations are in the state of coupling, which is not simply linear superposition, which will lead to the difficulty of fault analysis of planetary gear system. In view of the localization of CVT, the planetary commutator often appears vibration, noise, broken teeth and other faults during the reverse gear fatigue test. The life and reliability of CVT products are seriously weakened. Based on the theory of gear system dynamics, the factors such as time-varying meshing stiffness, combined meshing error, tooth side clearance and so on are considered in this paper. The nonlinear coupled differential equations of motion of the planetary commutator mechanism are established and solved numerically by using the variable step size 4-5 order Runge-Kutta algorithm. The bifurcation diagram of the system is drawn according to the simulation results. Combined with the dynamic load diagram, phase diagram, Poincare section and FFT spectrum, the motion state of the system is systematically analyzed in frequency domain and time domain. According to the possible chaotic state of planetary commutative mechanism, the chaotic time series analysis theory is introduced to calculate the maximum Lyapunov exponent. Whether the system is in a chaotic state is determined. Finally, with the tooth side clearance as the breakthrough point, the performance improvement test of the planetary commutator mechanism is carried out to verify the theoretical analysis results. The test shows that when the tooth side gap is too large, the planetary commutator mechanism has a large noise and frequent broken teeth faults. Reducing the tooth side clearance can effectively reduce the vibration of the system, but keeping the reasonable tooth side clearance can realize the floating uniform load of the planetary frame and prevent the tooth breakage caused by the uneven load.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:TH132.46
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 李瑰賢,馬亮,陶建國(guó),周銘,林少芬;艦船用齒輪傳動(dòng)嚙合剛度及動(dòng)態(tài)性能研究[J];船舶工程;2000年05期
2 李國(guó)云;秦大同;;風(fēng)力發(fā)電機(jī)齒輪箱加速疲勞試驗(yàn)技術(shù)分析[J];重慶大學(xué)學(xué)報(bào);2009年11期
3 孫智民,沈允文,李素有;封閉行星齒輪傳動(dòng)系統(tǒng)的扭振特性研究[J];航空動(dòng)力學(xué)報(bào);2001年02期
4 卜忠紅;劉更;吳立言;;斜齒輪嚙合剛度變化規(guī)律研究[J];航空動(dòng)力學(xué)報(bào);2010年04期
5 曹成龍;周云山;高帥;安穎;;金屬帶式無(wú)級(jí)變速器夾緊力試驗(yàn)研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年07期
本文編號(hào):1442236
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1442236.html
最近更新
教材專(zhuān)著