面向Modelica的多體系統(tǒng)笛卡爾方法建模
本文關(guān)鍵詞:面向Modelica的多體系統(tǒng)笛卡爾方法建模 出處:《華中科技大學(xué)》2011年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 多領(lǐng)域建模與仿真 Modelica 多體系統(tǒng) 笛卡爾方法
【摘要】:復(fù)雜機(jī)電產(chǎn)品通常由多個(gè)領(lǐng)域的子系統(tǒng)耦合而成,傳統(tǒng)單領(lǐng)域仿真工具無法滿足其系統(tǒng)仿真的需求,Modelica多領(lǐng)域統(tǒng)一建模語言能以統(tǒng)一的方式描述不同領(lǐng)域的模型,非常適合此類系統(tǒng)的建模與仿真。機(jī)械多體系統(tǒng)仿真是機(jī)電產(chǎn)品仿真的重要內(nèi)容,應(yīng)該在Modelica建模環(huán)境中得到完善的支持,但目前創(chuàng)建Modelica多體模型主要是基于Modelica多體庫或使用類似的方法,這些方法建模過程繁瑣,創(chuàng)建的模型不夠直觀,也無法處理冗余約束和初始裝配的問題,并且不便于導(dǎo)入ADAMS等主流多體軟件的模型。 本文針對(duì)上述問題進(jìn)行了研究,提出了一種以三維多體建模工具為建模前端,依據(jù)多體系統(tǒng)笛卡爾方法將其生成的物理模型轉(zhuǎn)換為數(shù)學(xué)模型,再根據(jù)Modelica語法規(guī)范將該數(shù)學(xué)模型轉(zhuǎn)換為Modelica表示的方法,并基于該方法實(shí)現(xiàn)了Modelica多體系統(tǒng)三維可視化建模系統(tǒng)。主要完成了以下幾方面的工作: (1)分析了多體系統(tǒng)物理模型和數(shù)學(xué)模型,還研究了與多體建模有密切關(guān)系的冗余約束消除和初始裝配問題。 (2)基于上述研究,提出了一套由多體系統(tǒng)物理模型到數(shù)學(xué)模型再到最后的Modelica表示的映射技術(shù)。 (3)根據(jù)所研究的多體物理模型到Modelica表示的映射技術(shù),將多體建模軟件InteDyna作為建模前端,設(shè)計(jì)并實(shí)現(xiàn)了Modelica多體三維可視化建模系統(tǒng)。最后,以多領(lǐng)域統(tǒng)一建模仿真平臺(tái)MWorks為驗(yàn)證工具進(jìn)行了實(shí)例測(cè)試,結(jié)果表明了所研究的多體物理模型到Modelica表示的映射技術(shù)的有效性,以及所設(shè)計(jì)的Modelica多體三維可視化建模系統(tǒng)的合理性。 本文提出的方法為通用的機(jī)械結(jié)構(gòu)設(shè)計(jì)軟件的裝配模型到多領(lǐng)域環(huán)境下的功能模型的轉(zhuǎn)換奠定了基礎(chǔ)。
[Abstract]:Complex electromechanical products are usually coupled by subsystems in many fields. Traditional single-domain simulation tools can not meet the needs of system simulation. Modelica multi-domain unified modeling language can describe models in different fields in a unified way, which is very suitable for modeling and simulation of such systems. Mechanical multi-body system simulation is an important content of electromechanical product simulation. It should be fully supported in the Modelica modeling environment, but currently the creation of the Modelica multi-body model is mainly based on the Modelica multi-body library or using a similar approach. The modeling process of these methods is cumbersome, the model created is not intuitive enough, the redundant constraints and initial assembly can not be handled, and it is not convenient to import the model of mainstream multi-body software such as ADAMS. In order to solve the above problems, this paper puts forward a new method, which is based on the Cartesian method of multi-body system, to transform the physical model into a mathematical model based on the 3D multi-body modeling tool as the front end of the modeling. Then the mathematical model is transformed into a method of Modelica representation according to the Modelica syntax specification. Based on this method, the 3D visualization modeling system of Modelica multi-body system is realized. (1) the physical and mathematical models of multi-body system are analyzed, and the redundant constraint cancellation and initial assembly problem which are closely related to multi-body modeling are also studied. 2) based on the above research, a set of mapping techniques from multi-body system physical model to mathematical model to final Modelica representation is proposed. 3) according to the mapping technology from the multi-body physical model to the Modelica representation, the multi-body modeling software InteDyna is used as the front end of the modeling. A multi-body visualization modeling system of Modelica is designed and implemented. Finally, the multi-domain unified modeling and simulation platform MWorks is used as the verification tool to carry out an example test. The results show the validity of the mapping technique from the multi-body physical model to the Modelica representation, and the rationality of the designed Modelica multi-body 3D visualization modeling system. The method proposed in this paper lays a foundation for the conversion of the assembly model of the general mechanical structure design software to the functional model in multi-domain environment.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH128
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何正大;許玫;楊訪;;用MapleSim進(jìn)行多領(lǐng)域混合建模仿真分析[J];電腦知識(shí)與技術(shù);2009年36期
2 専延風(fēng),陳關(guān)龍;基于Dymola的同步電機(jī)建模及仿真[J];機(jī)電工程;2004年03期
3 王波興;胡臻;夏鴻建;陳立平;;動(dòng)力學(xué)仿真中的子系統(tǒng)建模技術(shù)研究[J];計(jì)算機(jī)集成制造系統(tǒng);2007年03期
4 李炯;張承寧;王靜;;車輛動(dòng)力傳動(dòng)系模型庫的開發(fā)與應(yīng)用[J];計(jì)算機(jī)仿真;2006年09期
5 洪嘉振,劉延柱;離散系統(tǒng)計(jì)算動(dòng)力學(xué)現(xiàn)狀[J];力學(xué)進(jìn)展;1989年02期
6 徐志梅,劉永文,杜朝輝,孟光;熱機(jī)系統(tǒng)仿真中一種通用介質(zhì)容積模型的建立[J];燃?xì)廨啓C(jī)技術(shù);2003年04期
7 樸明偉;面向結(jié)構(gòu)的多剛體動(dòng)力學(xué)系統(tǒng)線圖[J];系統(tǒng)仿真學(xué)報(bào);2003年10期
8 李穎哲;林忠欽;陳泳;王皓;來新民;;基于EELG理論與Dymola環(huán)境的多學(xué)科系統(tǒng)集成仿真[J];系統(tǒng)仿真學(xué)報(bào);2006年08期
9 趙建軍;丁建完;周凡利;陳立平;;Modelica語言及其多領(lǐng)域統(tǒng)一建模與仿真機(jī)理[J];系統(tǒng)仿真學(xué)報(bào);2006年S2期
10 方成剛;于春建;黃筱調(diào);;基于ITI SimulationX數(shù)控銑滾齒復(fù)合機(jī)床機(jī)電耦合仿真[J];制造技術(shù)與機(jī)床;2009年12期
,本文編號(hào):1435802
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1435802.html