基于限滑差速系統(tǒng)的大型輪式裝載機(jī)行駛驅(qū)動性能研究
本文關(guān)鍵詞:基于限滑差速系統(tǒng)的大型輪式裝載機(jī)行駛驅(qū)動性能研究 出處:《吉林大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 輪式裝載機(jī) 限滑差速器 驅(qū)動性能 轉(zhuǎn)向性能
【摘要】:輪式裝載機(jī)作為一種土方機(jī)械,它的工作環(huán)境復(fù)雜多變,工作場地條件惡劣。裝載機(jī)經(jīng)常會遇到兩側(cè)輪胎路面附著條件不同的情況,路面附著條件的差異會產(chǎn)生不同程度的輪胎滑動。過度的輪胎滑動會造成裝載機(jī)通過性、驅(qū)動性和燃油經(jīng)濟(jì)性變差,工作效率降低。同時,輪胎的滑動也是導(dǎo)致輪胎磨損,影響輪胎使用壽命的重要因素之一。 現(xiàn)代裝載機(jī)多采用在驅(qū)動橋裝配限滑差速器來解決以上問題。較常見的是在前驅(qū)動橋裝配摩擦片式限滑差速器,部分裝載機(jī)在前、后驅(qū)動橋都有裝配。在驅(qū)動橋上裝配摩擦片式限滑差速器在不同程度上改善了由輪胎過度滑動帶來的諸多問題。因此,本文主要內(nèi)容是通過研究摩擦片式限滑差速器的工作原理和特性,分析不同驅(qū)動橋配置對裝載機(jī)驅(qū)動性、燃油經(jīng)濟(jì)性、工作效率和輪胎滑轉(zhuǎn)率等方面的影響。 雖然摩擦片式限滑差速器在輪式裝載機(jī)上的應(yīng)用在一定程度上改善了裝載機(jī)的實用性,但仍存在一定的局限性。比如在轉(zhuǎn)向過程中,摩擦片式限滑差速器不能解鎖,影響了裝載機(jī)的轉(zhuǎn)向能力,降低傳動系統(tǒng)的效率,增加輪胎磨損。另外,其鎖緊系數(shù)不能調(diào)節(jié),影響到其對不同工況的適應(yīng)性和傳動系統(tǒng)的效率。所以,本文的另一部分內(nèi)容是在前面研究的基礎(chǔ)上探討電控限滑差速器在輪式裝載機(jī)上的應(yīng)用性。本文主要做了以下的工作: 1.通過對摩擦片式限滑差速器的結(jié)構(gòu)特性和工作原理的分析,推導(dǎo)了摩擦片式限滑差速器的數(shù)學(xué)模型。在此基礎(chǔ)上,從動力學(xué)及運動學(xué)角度入手,,推導(dǎo)了主動式限滑差速器的數(shù)學(xué)模型,在MATLAB/SIMULINK環(huán)境中建立了二者的仿真模型; 2.基于80型輪式裝載機(jī)建立了鉸接式車輛8自由度車輛動力學(xué)數(shù)學(xué)模型、動力傳動系統(tǒng)數(shù)學(xué)模型,并在MATLAB/SIMULINK環(huán)境下建立了車輛動力學(xué)、動力傳動系統(tǒng)和輪胎力學(xué)的仿真模型; 3.分別設(shè)計了裝載機(jī)直線行駛和轉(zhuǎn)向行駛過程中主動式限滑差速器的控制策略。根據(jù)實際情況,設(shè)定了四種驅(qū)動橋配置(配置1:前、后橋裝配主動式限滑差速器;配置2:前、后橋裝配摩擦片式限滑差速器;配置3:前、后橋裝配開式差速器;配置4:前橋裝配摩擦片式限滑差速器,后橋裝配開式差速器)。在幾個典型工況和不同路面條件下,對以上四種驅(qū)動橋配置對裝載機(jī)各項性能的影響進(jìn)行對比分析。 得到的主要結(jié)論有: 1.直線行駛時,在極端路面條件下,配置1和配置2裝載機(jī)能保證裝載機(jī)的通過性,在行駛速度和牽引效率方面前者優(yōu)于后者;在一般路面條件下,配置1、配置2和配置4裝載機(jī)都能保證車輛較好的驅(qū)動性能。由于鎖緊系數(shù)不能調(diào)節(jié),摩擦片式限滑差速器相比于主動式限滑差速器在差速器傳動效率方面略顯不足,影響了傳動系統(tǒng)效率; 2.轉(zhuǎn)向行駛時,配置1裝載機(jī)轉(zhuǎn)彎半徑最小,有利于工作效率的提高,配置2和配置4裝載機(jī)轉(zhuǎn)彎半徑較大。相對于配置2和配置4,配置1裝載機(jī)能降低輪胎的磨損,提高裝載機(jī)轉(zhuǎn)向輕便性; 3.在V型作業(yè)循環(huán)工況下,相對于配置3,配置1、配置2和配置4裝載機(jī)完成一次作業(yè)循環(huán)的時間分別降低了6.2%、3.4%和2.7%;完成一次作業(yè)循環(huán)所消耗的燃油量分別降低了7.5%、4.7%和3.5%;鏟入深度分別提高了13.9%、7.8%和3.5%。配置1和配置2裝載機(jī)都能降低輪胎滑轉(zhuǎn)量,相比之下前者能更大程度降低輪胎磨損。
[Abstract]:As a kind of earthmoving wheel loader, its working environment is complex and changeable, the work site conditions. The loader often encountered on both sides of the tire road adhesion conditions in different situations, different road adhesion conditions will produce different degrees of tire slip. Excessive tire slip caused by loading machine, driving and fuel the economic deterioration, reduce the work efficiency. At the same time, the tire slip also lead to tire wear, one of the important factors affecting the service life of the tire.
The loader is used more in the drive axle assembly limited slip differential to solve the above problems. The most common is in the front drive axle assembly of the LSD, part of loader at the front and rear drive axle assembly. The assembly has many problems in the LSD caused by excessive tire sliding in different degree of improvement in the drive axle. Therefore, the main contents of this paper are the working principle and characteristics of friction plate limited slip differential through research, analysis of different configuration of drive axle drive loader, fuel economy, influence the work efficiency and the smooth conversion rate of the tyres.
Although the LSD in improving the practicability of the loader in a certain extent the application of wheel loader, but there are still some limitations. For example, in the process of turning, the LSD cannot unlock, affects the steering ability of the loader, lowering the efficiency of the transmission system, increase the tire wear. In addition, the locking coefficient can not be adjusted, affect the efficiency of adaptability and transmission system under different working conditions. So, the other part of this paper is on the basis of previous research on ELSD with application of the load on the wheel. This paper has done the following work:
1. through the analysis of the friction plate limited slip differential characteristics and working principle, derived the mathematical model of the limited slip differential friction. On this basis, starting from the perspective of dynamics and kinematics, the mathematical model of active limited slip differential is derived, in the MATLAB/ SIMULINK environment. The simulation model of the two building;
2., based on the 80 wheel loader, a 8 degree of freedom vehicle dynamics mathematical model of articulated vehicle and a mathematical model of power transmission system were established. And a simulation model of vehicle dynamics, power transmission system and tire mechanics was established under MATLAB/SIMULINK environment.
3. design of loader straight driving and control strategy of active limited slip differential steering process. According to the actual situation, set up four kinds of drive axle configuration (configuration 1: front, rear axle assembly slip differential; active limit configuration 2: before, after the bridge assembly of the LSD configuration; 3: the front, rear axle assembly open differential; configuration 4: front axle assembly the LSD, rear axle assembly). The open differential in several typical conditions and different road conditions, the above four kinds of drive axle configuration of loader performance were analyzed.
The main conclusions are as follows:
1. straight road, in extreme conditions, configuration 1 and 2 loading configuration function to ensure the loader through, in the speed and traction efficiency of the former is better than the latter; in general road conditions, configuration 1, 2 and 4 loader configuration configuration can ensure better performance of driving vehicles. Because the lock the coefficient cannot be adjusted, the LSD compared to active LSD in the differential transmission efficiency is slightly less, affect the transmission efficiency;
2., when steering, the minimum turning radius of the 1 loaders is configured, which is conducive to the improvement of working efficiency. The configuration 2 and the 4 loaders have larger turning radius. Compared with the configuration 2 and the configuration 4, the 1 loading mechanism is configured to reduce the tire wear and improve the steering portability of loaders.
In 3. V operating cycle, compared with the configuration of 3, 2 and 1 configuration, configuration configuration loader 4 time cycle operation completion were reduced by 6.2%, 3.4% and 2.7%; 7.5% to reduce the fuel quantity consumed by a complete cycle operation respectively, 4.7% and 3.5% respectively; shovel depth increase 13.9%, 7.8% and 1 3.5%. configuration and configuration 2 loader can reduce tire slip rate, compared with the former can reduce more tire wear.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH243
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐挺;鉸接式工程機(jī)構(gòu)——不穩(wěn)定轉(zhuǎn)向過程的運動學(xué)與動力學(xué)[J];工程機(jī)械;1979年02期
2 趙丁選 ,燕棠 ,陳之立 ,許純新;鉸接式裝載機(jī)重心位置的確定方法[J];工程機(jī)械;1990年09期
3 崔勝民;鉸接轉(zhuǎn)向工程機(jī)械動態(tài)數(shù)學(xué)模型的建立[J];工程機(jī)械;1991年05期
4 王國彪;發(fā)動機(jī)與液力變矩器共同工作點的優(yōu)化算法[J];工程機(jī)械;1998年03期
5 劉剛,張子達(dá),趙丁選;工程輪胎靜力學(xué)特性實驗研究與參數(shù)識別[J];工程機(jī)械;2004年07期
6 曾慶強(qiáng);秦四成;趙騰云;王雪蓮;;裝載機(jī)鏟斗鏟掘過程受力分析[J];工程機(jī)械;2011年01期
7 劉悅,劉爽,魯統(tǒng)利;液力變矩器的動態(tài)特性分析[J];吉林工學(xué)院學(xué)報(自然科學(xué)版);2002年01期
8 王建華;王云成;付鐵軍;張寶生;;裝用機(jī)械摩擦片式限滑差速器后輪驅(qū)動車輛的動力性[J];吉林大學(xué)學(xué)報(工學(xué)版);2006年02期
9 張楊;劉昕暉;;鉸接車體轉(zhuǎn)向橫擺穩(wěn)定性[J];吉林大學(xué)學(xué)報(工學(xué)版);2012年02期
10 王愛紅,張洪,林幕義;輪式工程車輛動力傳動系動態(tài)仿真系統(tǒng)研發(fā)[J];機(jī)械管理開發(fā);2004年03期
相關(guān)博士學(xué)位論文 前1條
1 王雪蓮;80型輪式裝載機(jī)動力系統(tǒng)工程特性研究[D];吉林大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 鄭洪興;輪式工程機(jī)械自動防滑差速系統(tǒng)研究[D];中南林學(xué)院;2003年
2 郭彥穎;CVT車輛中發(fā)動機(jī)建模與整車動力性仿真分析[D];吉林大學(xué);2005年
3 毛嘯滇;防滑差速器的應(yīng)用研究[D];合肥工業(yè)大學(xué);2006年
4 謝文云;電控限滑差速器限滑轉(zhuǎn)矩與整車性能匹配的仿真研究[D];吉林大學(xué);2007年
5 賈愛芹;輪式工程機(jī)械粘性限滑差速系統(tǒng)的研究[D];西安科技大學(xué);2008年
6 王曉峰;80型輪式裝載機(jī)動力傳動系統(tǒng)性能仿真分析[D];吉林大學(xué);2009年
7 丁華;后輪驅(qū)動汽車驅(qū)動防滑控制系統(tǒng)建模與控制研究[D];重慶大學(xué);2009年
8 陶禮;輪式工程機(jī)械防滑差速系統(tǒng)設(shè)計[D];西安科技大學(xué);2009年
9 張禹;輪式工程機(jī)械自動防滑差速的輪速檢測與控制[D];西安科技大學(xué);2009年
10 何波;輪式裝載機(jī)驅(qū)動橋限滑差速器工作性能分析[D];吉林大學(xué);2009年
本文編號:1426291
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1426291.html