天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)械論文 >

基于Alpha穩(wěn)定分布特征參數(shù)的滾動軸承故障診斷研究

發(fā)布時間:2017-12-31 10:35

  本文關(guān)鍵詞:基于Alpha穩(wěn)定分布特征參數(shù)的滾動軸承故障診斷研究 出處:《哈爾濱工業(yè)大學(xué)》2011年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 滾動軸承 Alpha穩(wěn)定分布 性能評估 故障診斷


【摘要】:滾動軸承作為機(jī)械設(shè)備中最常用的部件之一,其運行狀態(tài)是機(jī)械設(shè)備能否正常工作的重要影響因素。因此,對于滾動軸承的性能監(jiān)測以及故障診斷,其重要性不言而喻。當(dāng)滾動軸承在出現(xiàn)點蝕等故障時,很明顯的特點就是會在振動采樣信號中出現(xiàn)故障脈沖成份。在軸承故障初期,故障脈沖幅值較小,一般都會淹沒在采樣信號的噪聲之中,但到故障中后期時,故障脈沖幅值會越來越大,采樣信號本身也會呈現(xiàn)出明顯的脈沖特性。 本文首先從統(tǒng)計信號處理的角度出發(fā),通過分析滾動軸承故障仿真信號及其實際故障信號的非高斯性和脈沖特性,引入Alpha穩(wěn)定分布這一可用來描述具有明顯脈沖特性信號的統(tǒng)計模型。作為廣義化的高斯分布,Alpha穩(wěn)定分布擬合滾動軸承故障信號概率密度分布的精度更高,也更加的合理。 通過滾動軸承故障仿真信號的數(shù)學(xué)表達(dá)式,本文分析故障信號中軸承故障程度等因素對Alpha穩(wěn)定分布特征指數(shù)α及峭度值的影響,并明確了α值及峭度值只是反映信號本身的脈沖特性,與信號中的實際故障脈沖大小,即軸承故障程度并無直接關(guān)系這一結(jié)論。然后,通過進(jìn)一步分析對比α值及峭度值在滾動軸承性能評估的特點,提出一個新的基于Alpha穩(wěn)定分布概率密度分布的性能評估參數(shù)Lambda,通過仿真和實驗分析,指出其相對于α值及峭度值,具有對早期故障脈沖敏感度更高,晚期故障不會出現(xiàn)性能退化,且自身的敏感度可以根據(jù)實際需求調(diào)節(jié)的優(yōu)勢。 本文基于Alpha穩(wěn)定分布的特征參數(shù),提出了結(jié)合自適應(yīng)小波的滾動軸承早期故障信號檢測方法,以及結(jié)合神經(jīng)網(wǎng)絡(luò)的滾動軸承故障分類方法,通過實驗數(shù)據(jù)分析,表明將現(xiàn)代信號處理方法同Alpha穩(wěn)定分布結(jié)合的故障信號診斷方法,可以有效地分析滾動軸承故障信號,并且表現(xiàn)出了一定的優(yōu)勢。
[Abstract]:Rolling bearing is one of the most common parts of the mechanical equipment, its running status is an important factor influencing the mechanical equipment can work normally. Therefore, the rolling bearing performance monitoring and fault diagnosis, and its importance is self-evident. When there is pitting in rolling bearings fault, it's very clear that in the sampling pulse vibration fault ingredients appear in rolling bearing fault signal. The early fault pulse amplitude is small, usually submerged in the noise signal, but in the late fault, the fault pulse amplitude will become increasingly large, the sampling signal itself will clearly show the pulse characteristics.
Firstly, from the angle of statistical signal processing, non Gauss and pulse characteristics simulation fault signal of rolling bearings and the actual fault signal by analyzing the Alpha stable distribution which can be used to describe a statistical model was introduced. The characteristics of pulse signal distribution as a generalized Gauss Alpha stable distribution of the probability density distribution of rolling bearing fault the signal of higher accuracy and more reasonable.
The mathematical expression of fault simulation signal of the rolling bearing, the factors of bearing fault degree of fault signal analysis of the impact on the Alpha stable distribution characteristic exponent and kurtosis, and the alpha value and kurtosis value only reflect the pulse characteristics of the signal itself, and the actual size of fault pulse signal, namely bearing fault degree there is no direct relationship between this conclusion. Then, through further comparative analysis of alpha value and kurtosis in the characteristics of the performance evaluation of rolling bearings, put forward a Lambda performance evaluation of Alpha stable distribution of probability density distribution based on the new, through simulation and experimental analysis, pointed out that compared with the alpha value and kurtosis value is on early fault pulse sensitive late fault no performance degradation, and the sensitivity can be adjusted according to the actual needs of the advantage.
The characteristic parameters based on Alpha stable distribution, is presented based on adaptive wavelet of rolling bearing early fault signal detection method and fault classification method combined with neural network, by analyzing the experimental data show that the modern signal processing method with fault signal diagnosis method combining with Alpha stable distribution, can effectively analyze the fault signals of rolling bearing, and showed certain advantages.

【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2011
【分類號】:TH165.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 花皚,吳培珍;神經(jīng)網(wǎng)絡(luò)支持的智能電弧爐調(diào)節(jié)器[J];工業(yè)加熱;1999年06期

2 陳長征,羅躍綱,張省,虞和濟(jì);基于小波分析的機(jī)械故障特征提取研究[J];機(jī)械強(qiáng)度;2001年02期

3 郭宙;楊劍鋒;;基于EMD的AR模型在滾動軸承故障模式識別中的應(yīng)用[J];科技信息;2009年35期

4 張晨罡;郝偉;;基于AR模型的滾動軸承故障診斷[J];現(xiàn)代制造技術(shù)與裝備;2006年05期

5 孫學(xué)斌;;AR模型和SVM在機(jī)床滾動軸承故障診斷中的應(yīng)用[J];機(jī)械工程與自動化;2010年02期

6 楊國安,鐘秉林,黃仁,賈民平,許云飛;機(jī)械故障信號小波包分解的時域特征提取方法研究[J];振動與沖擊;2001年02期

7 楊宇,于德介,程軍圣;基于EMD與神經(jīng)網(wǎng)絡(luò)的滾動軸承故障診斷方法[J];振動與沖擊;2005年01期

8 馮志鵬;劉立;張文明;褚福磊;宋光雄;;基于小波時頻框架分解方法的滾動軸承故障診斷[J];振動與沖擊;2008年02期

9 肖健華,樊可清,吳今培,楊叔子;應(yīng)用于故障診斷的SVM理論研究[J];振動、測試與診斷;2001年04期

10 胡勁松,楊世錫,吳昭同,嚴(yán)拱標(biāo);基于EMD和HT的旋轉(zhuǎn)機(jī)械振動信號時頻分析[J];振動、測試與診斷;2004年02期

相關(guān)博士學(xué)位論文 前2條

1 查代奉;基于穩(wěn)定分布白噪聲的信號處理新方法研究[D];大連理工大學(xué);2006年

2 孫永梅;α穩(wěn)定分布參數(shù)估計與譜分析理論及應(yīng)用研究[D];大連理工大學(xué);2006年

,

本文編號:1359409

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1359409.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6361d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com