基于EMD與神經(jīng)網(wǎng)絡(luò)的柱塞泵故障診斷方法
本文關(guān)鍵詞:基于EMD與神經(jīng)網(wǎng)絡(luò)的柱塞泵故障診斷方法 出處:《華中科技大學(xué)》2011年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 柱塞泵 故障診斷 EMD Fuzzy ARTMAP 神經(jīng)網(wǎng)絡(luò)
【摘要】:混凝土泵車是一種負(fù)載變化復(fù)雜、工作環(huán)境惡劣的工程機(jī)械,其內(nèi)部元件常由于疲勞或油液污染引起各種故障的發(fā)生,混凝土泵車一旦出現(xiàn)事故往往對(duì)生產(chǎn)安全造成很大危害。根據(jù)統(tǒng)計(jì),柱塞泵是混凝土泵車中最主要的故障源之一,但是柱塞泵作為泵車泵送動(dòng)力的來(lái)源,既是旋轉(zhuǎn)機(jī)械,又是往復(fù)運(yùn)動(dòng)機(jī)械和機(jī)液轉(zhuǎn)換元件,工作過(guò)程中既有機(jī)械零件間的振動(dòng),又有工作介質(zhì)引起的沖擊,因而其給診斷帶來(lái)了很大的難度。 本研究分析了柱塞泵的結(jié)構(gòu)特點(diǎn)與運(yùn)動(dòng)規(guī)律,指出常見(jiàn)故障的發(fā)生位置與振動(dòng)頻率,通過(guò)傳統(tǒng)頻譜分析方法做出功率譜與包絡(luò)譜,但由于介質(zhì)沖擊影響嚴(yán)重?zé)o法找出故障特征。進(jìn)而提出利用Hilbert-Huang變換的核心理論EMD,將實(shí)驗(yàn)臺(tái)中測(cè)取的五種常見(jiàn)故障與正常狀態(tài)的振動(dòng)信號(hào)進(jìn)行分解,得到與自身頻率組成相符的各頻段信號(hào)波形,通過(guò)分析將其中蘊(yùn)含故障信息豐富的高頻段分量建立時(shí)間序列AR模型,并將模型參數(shù)作為故障診斷的特征參數(shù),作為后續(xù)神經(jīng)網(wǎng)絡(luò)的輸入。神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的非線性映射和并行處理的功能,網(wǎng)絡(luò)中的權(quán)值向量模擬人大腦神經(jīng)元的記憶方式,可以較為穩(wěn)定的存儲(chǔ)來(lái)自輸入樣本的特征信息,并利用已有信息對(duì)新輸入做出分類辨識(shí),因此本研究利用較新型的Fuzzy ARTMAP神經(jīng)網(wǎng)絡(luò)對(duì)柱塞泵六種狀態(tài)振動(dòng)信號(hào)的特征參數(shù)進(jìn)行學(xué)習(xí)與分類,結(jié)果表明該方法可以有效地完成診斷。本文還就特征參數(shù)個(gè)數(shù)對(duì)神經(jīng)網(wǎng)絡(luò)的分類效率影響進(jìn)行了討論,并實(shí)現(xiàn)了在不影響診斷準(zhǔn)確率的條件下對(duì)特征參數(shù)數(shù)量的減少。
[Abstract]:Concrete pump car is a kind of construction machinery with complex load change and bad working environment. The internal components of concrete pump car are often caused by various failures due to fatigue or oil pollution. According to statistics, piston pump is one of the main fault sources of concrete pump vehicle, but piston pump is the source of pump power. It is not only a rotating machine but also a reciprocating moving machine and a mechanical and hydraulic conversion element. In the working process there is both the vibration between the mechanical parts and the impact caused by the working medium, so it is very difficult to diagnose. In this paper, the structure characteristics and motion law of piston pump are analyzed, and the location and vibration frequency of common faults are pointed out. The power spectrum and envelope spectrum are obtained by traditional spectrum analysis method. However, due to the serious impact of the medium, the fault characteristics can not be found, and then the core theory of EMD based on Hilbert-Huang transform is proposed. By decomposing the five kinds of common faults and the vibration signals in normal state, the signal waveforms of each frequency band which are consistent with its own frequency composition are obtained. Time series AR model is established by analyzing the components of high frequency band which contain abundant fault information, and the model parameters are regarded as the characteristic parameters of fault diagnosis. As the input of the subsequent neural network, the neural network has powerful nonlinear mapping and parallel processing functions. The weight vector in the network simulates the memory mode of human brain neurons. It can store the feature information from the input sample stably and use the existing information to classify and identify the new input. Therefore, a new type of Fuzzy ARTMAP neural network is used to study and classify the characteristic parameters of six state vibration signals of piston pump. The results show that the method can effectively complete the diagnosis. The effect of the number of characteristic parameters on the classification efficiency of neural networks is also discussed in this paper. The reduction of the number of feature parameters without affecting the diagnostic accuracy is realized.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH322
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王少萍,王占林;液壓泵軸承故障的診斷方法[J];北京航空航天大學(xué)學(xué)報(bào);1993年04期
2 王慶華,張興彪,張洪朋,孫玉清;分形理論在液壓泵故障診斷中的應(yīng)用[J];大連海事大學(xué)學(xué)報(bào);2004年02期
3 趙永凱;趙靜一;陳一鳴;;軸向柱塞泵故障的振動(dòng)診斷研究[J];機(jī)床與液壓;1992年02期
4 姜萬(wàn)錄,王益群;混沌振子在液壓泵故障診斷中的應(yīng)用[J];機(jī)床與液壓;1999年05期
5 樓應(yīng)候,蔣亞南;機(jī)械設(shè)備故障診斷與監(jiān)測(cè)技術(shù)的發(fā)展趨勢(shì)[J];機(jī)床與液壓;2002年04期
6 羅守華,顏景平,王積偉;基于小波包分析的液壓系統(tǒng)泄漏故障診斷新方法[J];制造業(yè)自動(dòng)化;2004年03期
7 楊鐵林,高英杰,孔祥東;基于小波變換的柱塞泵故障診斷方法[J];機(jī)械工程學(xué)報(bào);2005年02期
8 曹鵬舉;高燕;李曉峰;;基于參數(shù)測(cè)量法的液壓故障診斷系統(tǒng)[J];空軍雷達(dá)學(xué)院學(xué)報(bào);2008年02期
9 陳季萍;軸向柱塞泵松靴故障特征信號(hào)的分析與選取[J];煤礦機(jī)械;2002年10期
10 石紅雁,許純新,瞿愛(ài)琴;液壓系統(tǒng)故障診斷的高階統(tǒng)計(jì)量-模糊神經(jīng)網(wǎng)絡(luò)法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2003年05期
相關(guān)博士學(xué)位論文 前3條
1 陸爽;基于現(xiàn)代信號(hào)分析和神經(jīng)網(wǎng)絡(luò)的滾動(dòng)軸承智能診斷技術(shù)研究[D];吉林大學(xué);2004年
2 馬吉恩;軸向柱塞泵流量脈動(dòng)及配流盤(pán)優(yōu)化設(shè)計(jì)研究[D];浙江大學(xué);2009年
3 徐增丙;基于自適應(yīng)共振理論的混合智能診斷方法及其應(yīng)用[D];華中科技大學(xué);2009年
,本文編號(hào):1355863
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1355863.html