基于粒子群算法的云計算資源配置研究
發(fā)布時間:2019-05-18 04:41
【摘要】:對于云計算而言,虛擬機資源的合理高效配置具有重要意義.該文對粒子群方法進行到云計算資源配置的映射,詳細地設(shè)計了3個約束條件和目標函數(shù).目標函數(shù)中包含了資源利用率和遷移次數(shù)2個優(yōu)化目標,整個虛擬機資源的配置過程設(shè)置了8個步驟.實驗結(jié)果表明:同2種參照方法相比,該文所提出的基于粒子群算法的云資源配置方法完成配置后,不僅資源利用率高、遷移次數(shù)低,其迭代過程和迭代時間也令人滿意.
[Abstract]:For cloud computing, the reasonable and efficient allocation of virtual machine resources is of great significance. In this paper, the particle swarm optimization method is mapped to cloud computing resource configuration, and three constraints and objective functions are designed in detail. The objective function contains two optimization objectives: resource utilization and migration times, and eight steps are set up in the configuration process of virtual machine resources. The experimental results show that compared with the two reference methods, the proposed cloud resource allocation method based on particle swarm optimization algorithm not only has high resource utilization and low migration times, but also has satisfactory iterative process and iterative time.
【作者單位】: 廣州番禺職業(yè)技術(shù)學院財經(jīng)學院;
【基金】:廣州番禺職業(yè)技術(shù)學院“十三五”科技項目(2016KJ007);廣州番禺職業(yè)技術(shù)學院“十二五”第二批科技項目(2015KJ003)
【分類號】:TP18;TP3
本文編號:2479679
[Abstract]:For cloud computing, the reasonable and efficient allocation of virtual machine resources is of great significance. In this paper, the particle swarm optimization method is mapped to cloud computing resource configuration, and three constraints and objective functions are designed in detail. The objective function contains two optimization objectives: resource utilization and migration times, and eight steps are set up in the configuration process of virtual machine resources. The experimental results show that compared with the two reference methods, the proposed cloud resource allocation method based on particle swarm optimization algorithm not only has high resource utilization and low migration times, but also has satisfactory iterative process and iterative time.
【作者單位】: 廣州番禺職業(yè)技術(shù)學院財經(jīng)學院;
【基金】:廣州番禺職業(yè)技術(shù)學院“十三五”科技項目(2016KJ007);廣州番禺職業(yè)技術(shù)學院“十二五”第二批科技項目(2015KJ003)
【分類號】:TP18;TP3
【相似文獻】
相關(guān)期刊論文 前3條
1 曹紅珍;胡亮;宮薇薇;郭立力;陳素;鄭媛;;具有隨機附加項的PSO改進算法[J];計算機工程與設(shè)計;2007年10期
2 田宏偉;解福;倪俊敏;;云計算環(huán)境下基于粒子群算法的資源分配策略[J];計算機技術(shù)與發(fā)展;2011年12期
3 敬思遠;佘X;;基于混合粒子群算法的虛擬數(shù)據(jù)中心能耗優(yōu)化[J];計算機工程;2012年15期
相關(guān)碩士學位論文 前5條
1 陳靜怡;云計算環(huán)境下基于改進粒子群算法的動態(tài)資源調(diào)度研究[D];南京信息工程大學;2016年
2 張翠蘋;云存儲環(huán)境下副本管理策略研究[D];沈陽航空航天大學;2016年
3 苗冬云;基于改進粒子群算法的云任務(wù)調(diào)度方案研究[D];安徽財經(jīng)大學;2015年
4 普煜;云銀行模型下基于粒子群原理的計算資源定價策略研究[D];云南大學;2012年
5 田宏偉;云計算環(huán)境下資源分配策略的研究[D];山東師范大學;2012年
,本文編號:2479679
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2479679.html
最近更新
教材專著