基于ARM和DSP的微小型組合導(dǎo)航系統(tǒng)研究
本文選題:微小型組合導(dǎo)航系統(tǒng) 切入點(diǎn):擴(kuò)展卡爾曼濾波 出處:《哈爾濱工程大學(xué)》2012年碩士論文
【摘要】:微小型組合導(dǎo)航系統(tǒng)能夠充分發(fā)揮各導(dǎo)航子系統(tǒng)的優(yōu)點(diǎn),彌補(bǔ)各自的不足,并擴(kuò)展了組合導(dǎo)航系統(tǒng)的應(yīng)用范圍,是當(dāng)前導(dǎo)航技術(shù)研究的熱點(diǎn)。微小型組合導(dǎo)航系統(tǒng)是利用MEMS技術(shù)的微慣性測量單元為核心,以GPS或者其它定位方法作為輔助,,使用信息融合的方法有效的提高系統(tǒng)的精度和可靠性。本文以社區(qū)監(jiān)控機(jī)器人的應(yīng)用為背景完成基于ARM和DSP的微小型組合導(dǎo)航系統(tǒng)方案設(shè)計(jì)。 本文在捷聯(lián)慣性導(dǎo)航原理和GPS原理的基礎(chǔ)上,逐步對整個微小型組合導(dǎo)航系統(tǒng)展開研究。首先確立微小型組合導(dǎo)航系統(tǒng)方案,導(dǎo)航計(jì)算機(jī)采用ARM和DSP的雙CPU結(jié)構(gòu),將整個系統(tǒng)分解為數(shù)據(jù)采集模塊和捷聯(lián)解算模塊;針對微慣性測量單元誤差較大的問題,采用通過試驗(yàn)的方法對慣性導(dǎo)航系統(tǒng)誤差進(jìn)行建模和仿真分析,提出能夠影響導(dǎo)航精度的主要因子。 其次,研究捷聯(lián)解算的原理,對比多種解算方法之后采用基于四元數(shù)的捷聯(lián)解算方法。根據(jù)最小方差估計(jì)推導(dǎo)出卡爾曼濾波,針對卡爾曼濾波原理提出卡爾曼濾波在組合導(dǎo)航中應(yīng)用應(yīng)該注意的問題;根據(jù)貝葉斯估計(jì)推出了粒子濾波,提出粒子濾波在組合導(dǎo)航系統(tǒng)中應(yīng)用的方案,能夠有效的解決粒子濾波的粒子退化問題。 分析捷聯(lián)慣性導(dǎo)航系統(tǒng)中的誤差形式和GPS的誤差形式,根據(jù)各子系統(tǒng)的誤差模型建立濾波方程,采用位置速度的組合模式,建立組合導(dǎo)航系統(tǒng)模型。并且在Matlab軟件中設(shè)計(jì)軌跡發(fā)生器,用來模擬導(dǎo)航參數(shù)。根據(jù)建立的模型和設(shè)置的仿真參數(shù),設(shè)計(jì)EKF、UKF、PF濾波算法進(jìn)行系統(tǒng)仿真,并利用統(tǒng)計(jì)學(xué)的方法對多次仿真結(jié)果進(jìn)行綜合分析,實(shí)驗(yàn)結(jié)果表明PF的濾波精度最高但是運(yùn)算時間最長,使系統(tǒng)不能滿足實(shí)時性需求,UKF濾波精度能夠滿足系統(tǒng)需求,運(yùn)算時間大約是EKF的運(yùn)算時間的1.2倍,但也能滿足實(shí)時性要求,EKF濾波精度最低。 最后,根據(jù)室外監(jiān)控機(jī)器人自身設(shè)備要求和導(dǎo)航計(jì)算機(jī)的發(fā)展趨勢,設(shè)計(jì)基于ARM和DSP的微小型組合導(dǎo)航系統(tǒng)。在基于分布式模塊化設(shè)計(jì)方案的基礎(chǔ)上完成了微小型組合導(dǎo)航系統(tǒng)的硬、軟件開發(fā)。其中在任務(wù)管理模塊完成了數(shù)據(jù)采集和串口通信程序,在數(shù)據(jù)處理模塊完成了捷聯(lián)慣性導(dǎo)航系統(tǒng)的捷聯(lián)解算算法和組合導(dǎo)航的UKF濾波算法程序。利用機(jī)器人自帶的機(jī)載計(jì)算機(jī)完成能夠用3D模型直觀顯示運(yùn)動狀態(tài)的人機(jī)交互軟件的設(shè)計(jì)。通過最終的跑車試驗(yàn),驗(yàn)證了本文所設(shè)計(jì)的微小型組合導(dǎo)航系統(tǒng)的可行性,為室外機(jī)器人的導(dǎo)航定位工程化奠定了基礎(chǔ)。
[Abstract]:Micro integrated navigation system can take full advantage of the navigation subsystem, to make up for their deficiencies, and expand the application range of the integrated navigation system is the research hotspot of navigation technology. Micro navigation system is the use of MEMS technology for micro inertial measurement unit as the core, with GPS or other positioning methods as auxiliary using the method of information fusion system to improve the accuracy and reliability. This paper takes application as the background to complete the community monitoring robot design scheme of micro navigation system based on ARM and DSP.
Based on strapdown inertial navigation principle and the principle of GPS, gradually expanded to the study of micro navigation system. Firstly, establishing the micro integrated navigation system, the navigation computer based on double CPU structure of ARM and DSP, the whole system is divided into data acquisition module and decoding module to solve the problem of strapdown inertial measurement unit; the error of the modeling and simulation analysis of the inertial navigation system error by means of testing, puts forward the main factors that influence the navigation precision.
Secondly, the principle of Strapdown algorithm, comparing many calculation methods using strapdown four element calculation method based on minimum variance estimate is derived. According to the Calman filter, Calman filter principle is proposed for application should pay attention to Calman filter in integrated navigation problem; according to Bias launched the estimation of particle filter, this paper uses the particle filter in integrated navigation system scheme, can effective particle filter to solve the particle degradation problem.
Error analysis and error form form GPS strapdown inertial navigation system, is established according to the filtering equation error model of each subsystem, the combination mode of position and velocity, the establishment of integrated navigation system. And the design of trajectory generator in Matlab software, used to simulate the navigation parameters. According to the simulation parameters, and set up the design model EKF, UKF, PF filtering algorithm for system simulation and comprehensive analysis of the simulation results using statistical methods, the experimental results show that PF filtering accuracy is the highest but the longest operation time, the system can not meet the real-time requirement, UKF filtering accuracy can meet the requirement of the system, the operation time is about 1.2 times the calculation time of EKF, but also can meet the requirements of real-time, accuracy of EKF filter is minimum.
Finally, according to the development trend of outdoor monitoring robot navigation computer and its equipment requirements, the design of the micro integrated navigation system based on ARM and DSP. The software development based on distributed modular design on the completion of the micro integrated navigation system. In the hardware, the task management module to complete the data acquisition and serial communication in the program, the data processing module to complete the strapdown inertial navigation system solver algorithm and UKF filter algorithm of integrated navigation is designed. Using robotic airborne computer software can achieve human-computer interaction 3D model for the visual display of the motion state. Through the experiment finally, verify the feasibility of the micro integrated navigation system the design of the navigation project for outdoor robots of the foundation.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TN967.2;TP368.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 蔣慶仙;;關(guān)于MEMS慣性傳感器的發(fā)展及在組合導(dǎo)航中的應(yīng)用前景[J];測繪通報(bào);2006年09期
2 王憶鋒;;MEMS和導(dǎo)航級MEMS慣性傳感器[J];飛航導(dǎo)彈;2008年08期
3 于潔;王新龍;;SINS/GPS緊密組合導(dǎo)航系統(tǒng)仿真研究[J];航空兵器;2008年06期
4 吳海仙;俞文伯;房建成;;高空長航時無人機(jī)SINS/CNS組合導(dǎo)航系統(tǒng)仿真研究[J];航空學(xué)報(bào);2006年02期
5 李輝;沈瑩;張安;程t$;;交互式多模型目標(biāo)跟蹤的研究現(xiàn)狀及發(fā)展趨勢[J];火力與指揮控制;2006年11期
6 肖乾;多模型估計(jì)理論[J];艦船科學(xué)技術(shù);2005年02期
7 俞瑛;;硅微機(jī)械慣性傳感器技術(shù)及其應(yīng)用[J];集成電路通訊;2005年01期
8 何廣軍;李寶全;馬計(jì)房;;SINS/GPS組合導(dǎo)航的半實(shí)物仿真實(shí)驗(yàn)系統(tǒng)設(shè)計(jì)[J];計(jì)算機(jī)仿真;2006年07期
9 臧榮春;崔平遠(yuǎn);崔祜濤;金藝;;基于IMM-UKF的組合導(dǎo)航算法[J];控制理論與應(yīng)用;2007年04期
相關(guān)博士學(xué)位論文 前1條
1 馬云峰;MSINS/GPS組合導(dǎo)航系統(tǒng)及其數(shù)據(jù)融合技術(shù)研究[D];東南大學(xué);2006年
相關(guān)碩士學(xué)位論文 前6條
1 鐘圣;捷聯(lián)慣導(dǎo)系統(tǒng)標(biāo)定與傳遞對準(zhǔn)技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2010年
2 李大威;卡爾曼濾波在INS/GPS組合導(dǎo)航中的應(yīng)用研究[D];中北大學(xué);2006年
3 王體昌;基于ARM的嵌入式組合導(dǎo)航平臺設(shè)計(jì)[D];大連理工大學(xué);2009年
4 夏全喜;SINS/GPS/EC組合導(dǎo)航系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)研究[D];哈爾濱工程大學(xué);2009年
5 李鵬程;組合導(dǎo)航及其濾波算法研究[D];西安電子科技大學(xué);2010年
6 田磊;GPS/INS組合導(dǎo)航中的非線性濾波方法研究[D];電子科技大學(xué);2010年
本文編號:1722320
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1722320.html