激光熔覆鎳基單晶合金過程中晶體生長和組織分布的研究
[Abstract]:The nickel-based single-crystal high-temperature alloy is widely used as a material for high-pressure turbine blades of modern gas turbines because of its excellent high-temperature creep and high-temperature fatigue properties. The material and manufacturing cost of the nickel-based single-crystal turbine blade are high, and the service life of the nickel-based single-crystal turbine blade is high, and the service life of the nickel-based single-crystal turbine blade is affected by various defects such as fatigue crack, loss of tip quality, The cost of the nickel-based single-crystal turbine blade is a significant part of the maintenance of the gas turbine. By detecting and repairing the damaged blades, the service life of the damaged blades can be prolonged, the maintenance cost of the gas turbine can be reduced, and a large amount of expensive alloy materials are saved. Laser powder-feeding and cladding technology has been used as a high-efficiency repair technology for blade tip net-forming and repair of polycrystalline alloy blades. In that nickel-based single-crystal alloy blade, only the single-crystal tissue which is consistent with the substrate is kept in the repair area, so that the mechanical property of the repaired single-crystal blade can not be reduced, and the successful repair can be realized. At present, the nickel-based single-crystal turbine blade is mainly manufactured by the investment casting method. The investment casting method has the defects of long production period, high cost, high failure rate and easy production of casting defects, and the like, and the manufacturing cost of the single crystal blade is high. Laser powder-feeding and cladding technology can be used to directly form parts of various materials, such as CAD, CAM and feedback control. Therefore, the laser powder feeding and cladding technology can not only be used for the repair of single crystal turbine blades, but also provides the feasibility of directly and rapidly forming single crystal turbine blades. And the key of using the laser technology to directly clean the single crystal blade is to realize the continuous growth of the single crystal tissue in the multi-layer multi-channel laser cladding process. However, in the process of laser-feeding and cladding of single crystal alloy, the crystal growth in the molten pool is affected by many factors, and it is very difficult to control. Therefore, it is of great significance to study the transmission phenomenon and the mechanism of single crystal growth and the distribution of the structure in the process of the laser-feeding and cladding of the Ni-based single crystal alloy, which can also contribute to the development of the single-crystal blade repair and manufacturing technology. In order to better understand the transmission of laser powder in the process of single crystal alloy, a three-dimensional transient numerical model is established in this study. The numerical model is used to quantitatively study the laser-powder interaction, heat conduction, melting, solidification, liquid metal flow field, remelting and lapping. The effects of laser power, scanning speed and powder feeding rate on the transmission are also discussed. On the basis of the established three-dimensional numerical model, a new crystal growth model was established and coupled into the previous three-dimensional model to calculate the crystal growth behavior and the distribution of the microstructure in the cladding layer during the solidification of the molten pool. The effects of process parameters such as laser power, scanning speed, powder feeding rate, coaxial nozzle inclination angle and substrate crystal orientation on the crystal growth and microstructure distribution are calculated and compared with the experimental results. Aiming at the tip repair of single crystal blade, the process parameters of continuous growth of single crystal are optimized in the process of laser thin-wall cladding. On this basis, the crystal growth and tissue distribution in the laser multi-layer multi-channel cladding process are further studied, and the effects of the lapping rate and the scanning path on the crystal growth and the microstructure distribution are also analyzed. On the basis of the numerical simulation results, a mathematical model is constructed to calculate the process window of the continuous growth of the single crystal tissue. At the same time, through the numerical simulation and the experimental results, the mechanism of the crack in the process of multi-layer multi-channel laser cladding single crystal alloy is analyzed, and the auxiliary process method is designed to control the appearance of the crack. Finally, the feasibility of laser repair and the manufacture of single crystal blade is discussed.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TG665;TG132.3
【相似文獻】
相關(guān)期刊論文 前10條
1 萬家義;中國第十二屆晶體生長學(xué)術(shù)會訊息[J];化學(xué)研究與應(yīng)用;2000年02期
2 王繼揚;晶體生長形態(tài)學(xué)研究新進展──評介《晶體生長形態(tài)學(xué)》一書[J];人工晶體學(xué)報;2000年01期
3 閔乃本;晶體生長的缺陷機制[J];人工晶體學(xué)報;2000年S1期
4 李銀安;用穩(wěn)定的激光控制空間的晶體生長[J];物理;2001年11期
5 ;晶體生長設(shè)備系列產(chǎn)品[J];西安理工大學(xué)學(xué)報;2002年02期
6 陳勇,邵曼君,李竹川;應(yīng)用環(huán)境掃描電鏡研究硫酸鉀小晶體生長[J];電子顯微學(xué)報;2002年05期
7 張學(xué)華,羅豪u&,仲維卓;負離子配位多面體生長基元模型及其在晶體生長中的應(yīng)用[J];中國科學(xué)E輯:技術(shù)科學(xué);2004年03期
8 ;第14屆全國晶體生長與材料學(xué)術(shù)會議(第一輪通知)[J];結(jié)構(gòu)化學(xué);2006年04期
9 ;第14屆全國晶體生長與材料學(xué)術(shù)會議(第二輪通知)[J];稀有金屬;2006年05期
10 ;蔣民華獲亞洲晶體生長與晶體技術(shù)獎[J];中國基礎(chǔ)科學(xué);2008年03期
相關(guān)會議論文 前10條
1 陳萬春;宋友庭;陳小龍;;晶體生長的空間實驗和地基研究[A];第15屆全國晶體生長與材料學(xué)術(shù)會議論文集[C];2009年
2 李式鳳;林樹坤;;新型軟X射線分光晶體磺基水楊酸鹽類晶體生長、結(jié)構(gòu)及性能研究[A];第15屆全國晶體生長與材料學(xué)術(shù)會議論文集[C];2009年
3 張學(xué)華;羅豪u&;仲維卓;;負離子配位多面體生長基元模型基礎(chǔ)及幾個應(yīng)用實例[A];中國硅酸鹽學(xué)會2003年學(xué)術(shù)年會論文摘要集[C];2003年
4 陳勇;邵曼君;李竹川;;應(yīng)用環(huán)境掃描電鏡研究硫酸鉀小晶體生長[A];第十二屆全國電子顯微學(xué)會議論文集[C];2002年
5 殷紹唐;;熔體法晶體生長微觀機理的原位實時研究[A];第十六屆全國晶體生長與材料學(xué)術(shù)會議論文集-大會報告[C];2012年
6 孫辛;寇明喜;;晶體生長、培養(yǎng)的自動化和高通量化的解決方案[A];中國晶體學(xué)會第四屆全國會員代表大會暨學(xué)術(shù)會議學(xué)術(shù)論文摘要集[C];2008年
7 金蔚青;潘秀紅;劉巖;;晶體本征生長速度波動的理論和實驗空間晶體生長研究的反思[A];中國空間科學(xué)學(xué)會空間材料專業(yè)委員會2009學(xué)術(shù)交流會論文集[C];2009年
8 仲維卓;羅豪u&;張欽輝;華素坤;;晶體生長機理的幾個問題[A];第15屆全國晶體生長與材料學(xué)術(shù)會議論文集[C];2009年
9 金蔚青;;二十一世紀晶體生長機理研究的新概念——無量綱參數(shù)研究材料制備科學(xué)[A];第15屆全國晶體生長與材料學(xué)術(shù)會議論文集[C];2009年
10 馬建華;倉懷興;;空間蛋白質(zhì)晶體生長新技術(shù)[A];第十一次中國生物物理學(xué)術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
相關(guān)重要報紙文章 前6條
1 楊志奇;第十六屆國際晶體生長會議在京召開[N];中國建材報;2010年
2 記者 王桂蘭;第三屆亞洲晶體生長與晶體技術(shù)會議舉行[N];中國建材報;2005年
3 范文忠;上虞有種“煉丹爐”能“煉”出神奇寶貝[N];杭州日報;2007年
4 高琴偉;晶龍晶體生長設(shè)備替代進口[N];中國企業(yè)報;2008年
5 薛福勇 馮月劍;自主研發(fā)抵御產(chǎn)業(yè)“寒冬”[N];首都建設(shè)報;2012年
6 基因潮綜合報道;航天生物產(chǎn)業(yè)與“神舟”齊飛[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報;2002年
相關(guān)博士學(xué)位論文 前10條
1 楊睿;ZnTe的晶體生長、性能表征與缺陷研究[D];西北工業(yè)大學(xué);2015年
2 劉朝陽;激光熔覆鎳基單晶合金過程中晶體生長和組織分布的研究[D];上海交通大學(xué);2015年
3 高文蘭;馳豫鐵電鈮酸鈣鋇系列晶體生長與性能研究[D];山東大學(xué);2010年
4 陳天華;仿生物礦化模板法調(diào)控晶體生長機理與試驗研究[D];吉林大學(xué);2012年
5 謝會東;含鉍功能晶體生長與性質(zhì)研究[D];清華大學(xué);2007年
6 陳捷;上稱重法生長摻稀土鎢酸釓鉀及若干新晶體結(jié)構(gòu)設(shè)計與制備[D];福州大學(xué);2010年
7 李國華;納米TiO_2(金紅石銳鈦礦)粉體晶相控制研究與晶體生長界面相模型[D];中南大學(xué);2001年
8 申少華;廉價礦物原料水熱法制備沸石分子篩的形成機理與晶體生長模型研究[D];中南大學(xué);2001年
9 汪盛;用原子力顯微鏡(AFM)進行蛋白質(zhì)晶體生長及成核研究[D];重慶大學(xué);2003年
10 魯路;大尺寸CsB_3O_5晶體生長及應(yīng)用研究[D];中國科學(xué)院研究生院(理化技術(shù)研究所);2008年
相關(guān)碩士學(xué)位論文 前10條
1 張曉彤;Nd:CNGS晶體生長及性質(zhì)研究[D];山東大學(xué);2015年
2 蘇佳樂;PET晶體生長的影響因素研究[D];北京工業(yè)大學(xué);2015年
3 王靜;微重力對膠原纖維化和羥基磷灰石晶體生長的影響研究[D];揚州大學(xué);2015年
4 康道遠;不同旋轉(zhuǎn)半徑及甲紫摻雜條件下KDP晶體生長過程的實驗研究[D];重慶大學(xué);2015年
5 王曉東;三溫區(qū)晶體生長爐控制系統(tǒng)設(shè)計與控制方法研究[D];東北大學(xué);2014年
6 肖志夏;NiCl_2及CoS_2晶體生長數(shù)值模擬[D];北京理工大學(xué);2016年
7 顏新青;金屬晶體生長機制的分子動力學(xué)模擬研究[D];北京理工大學(xué);2016年
8 張亮;晶體生長中的計算機控制研究[D];長春理工大學(xué);2005年
9 蔣宛莉;中國古代晶體生長史初探[D];山東大學(xué);2007年
10 曾小平;大型晶體生長系統(tǒng)(設(shè)備)關(guān)鍵技術(shù)研究[D];西安理工大學(xué);2008年
,本文編號:2510527
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2510527.html