網(wǎng)孔板漸進(jìn)成形性能研究
[Abstract]:As a kind of flexible manufacturing technology, sheet metal incremental forming technology has made great progress, but the mesh plate incremental forming process is still in the initial stage. With the wide application of the mesh plate, the research on the progressive forming performance of the mesh plate has a good role in promoting the development of the new mesh plate forming process and expanding the application field of the incremental forming process. In this paper, continuous contact incremental forming process and hammer progressive forming process are used to form mesh plate, both of which are flexible manufacturing processes based on sheet metal incremental forming technology. The basic problems related to the progressive forming properties of mesh plate were studied by experiment and numerical simulation. The feasibility of mesh plate forming is verified by constant angle cone cup experiment. The results show that the circular holes in the deformation region of the mesh plate become elliptical holes in the two progressive forming processes. Compared with hammer progressive forming, the forming angle of continuous contact incremental forming mesh plate is relatively large, and the mesh deformation is relatively small. The numerical simulation results show that the deformation of mesh plate belongs to plane strain, and the circular hole in the forming region is elliptical hole, which is consistent with the experiment, and the thickness of sheet metal varies according to the sine theorem. Compared with hammer progressive forming, the main strain fluctuation range, thickness and thinning rate fluctuation range of continuous contact incremental forming mesh plate are smaller. However, the equivalent stress fluctuation range of mesh plate is smaller and the forming force is smaller. Based on numerical simulation, the failure prediction of progressive forming failure of mesh plate is carried out by using CockcroftLatham criterion. The results show that the failure judgment results of hammer progressive forming failure of mesh plate are in agreement with the experimental results. However, there is a certain error in the judging result of continuous contact incremental forming. In addition, the influence of process parameters on the formability of mesh plate was studied by experiment and numerical simulation. The results show that the forming limit angle decreases with the increase of the feed rate of the mesh plate, while the diameter of the tool head and the feed speed have little effect on the forming limit angle. When the diameter of the mesh plate is constant, the forming limit angle does not increase when the diameter of the mesh plate is constant, and the forming limit angle is not increased, and the forming limit angle is increased when the diameter of the mesh hole is increased accordingly. In addition, with the increase of the forming depth, the mesh deformation in the continuous contact progressive forming region increases first and then decreases, and the whole deformation increases relatively with the increase of the feed rate and the feed rate of the layer.
【學(xué)位授予單位】:青島理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TG306
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜衛(wèi)平;新型降壓孔板的應(yīng)用[J];石油化工設(shè)備技術(shù);2001年02期
2 張進(jìn)先;新型高頻孔板式疏解機(jī)[J];西南造紙;2002年05期
3 馮欣;孔板在石化工業(yè)應(yīng)用中的常見問題[J];石油化工自動化;2004年03期
4 劉其濱;流量孔板的安裝及測量結(jié)果的修正[J];鞍鋼技術(shù);2004年04期
5 張來;;孔板技術(shù)在航天爐中的應(yīng)用[J];小氮肥;2010年10期
6 H.霍胡 ,杧克勇;以孔板控制熱交c踇J];化學(xué)世界;1958年09期
7 ;小管徑孔板流量系數(shù)試驗(yàn)[J];醫(yī)藥農(nóng)藥工業(yè)設(shè)計(jì);1972年Z1期
8 ;小管徑孔板流量系數(shù)實(shí)驗(yàn)[J];石油化工自控簡訊;1972年01期
9 ;篩孔板塔干板壓降計(jì)算[J];化學(xué)工程;1977年01期
10 王滔;標(biāo)準(zhǔn)孔板用于小型風(fēng)機(jī)性能試驗(yàn)[J];糧油加工與食品機(jī)械;1979年10期
相關(guān)會議論文 前6條
1 徐楊;王晉軍;;渦環(huán)撞擊孔板的實(shí)驗(yàn)研究[A];第九屆全國實(shí)驗(yàn)流體力學(xué)學(xué)術(shù)會議論文集(上冊)[C];2013年
2 周龍偉;劉豐睿;支杰;趙麗濱;;壓載作用下復(fù)合材料孔板強(qiáng)度預(yù)測研究[A];力學(xué)與工程應(yīng)用[C];2012年
3 王剛;尹慧慧;王婧倩;;采用孔板調(diào)節(jié)的列車均勻送風(fēng)系統(tǒng)研究[A];中國建筑學(xué)會建筑熱能動力分會第十七屆學(xué)術(shù)交流大會暨第八屆理事會第一次全會論文集[C];2011年
4 程斌;石鵬;王健磊;李純;;鋼橋塔開孔板單軸受壓試驗(yàn)與數(shù)值分析[A];鋼結(jié)構(gòu)工程研究(十)——中國鋼結(jié)構(gòu)協(xié)會結(jié)構(gòu)穩(wěn)定與疲勞分會第14屆(ISSF-2014)學(xué)術(shù)交流會暨教學(xué)研討會論文集[C];2014年
5 王剛;尹慧慧;王婧倩;;采用孔板調(diào)節(jié)的列車均勻送風(fēng)系統(tǒng)研究[A];山東土木建筑學(xué)會熱能動力專業(yè)委員會第13屆學(xué)術(shù)交流會論文集[C];2010年
6 劉文思;張?jiān)蕦?龍欽松;徐向奎;魏書杰;姜威;;文丘里管與槽式孔板在兩相流檢測中的實(shí)驗(yàn)研究[A];第十五屆中國海洋(岸)工程學(xué)術(shù)討論會論文集(中)[C];2011年
相關(guān)博士學(xué)位論文 前2條
1 李紅文;孔板流量測量裝置異變流場在線診斷與修正[D];天津大學(xué);2015年
2 潘祖興;開孔板結(jié)構(gòu)應(yīng)力及穩(wěn)定性半解析分析方法研究[D];華中科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 于美琪;核級管道中多級孔板消能器流場的數(shù)值模擬研究與分析[D];燕山大學(xué);2015年
2 梁慧;高通量選育產(chǎn)γ-氨基丁酸乳酸菌[D];安徽工程大學(xué);2015年
3 白兆亮;有壓輸水管道孔板局部阻力相鄰影響研究[D];新疆農(nóng)業(yè)大學(xué);2015年
4 徐晟宇;裝配式圓孔板剪力墻抗震性能研究[D];北京建筑大學(xué);2016年
5 張淑芹;網(wǎng)孔板漸進(jìn)成形性能研究[D];青島理工大學(xué);2016年
6 余曉曦;便攜式孔板多參數(shù)綜合測量儀測控電路與軟件的實(shí)現(xiàn)[D];電子科技大學(xué);2008年
7 張一曉;基于槽式孔板的分層流計(jì)量機(jī)理建模研究[D];中國石油大學(xué)(華東);2013年
8 余道丞;基于槽式孔板的兩相流計(jì)量模型及計(jì)量算法研究[D];中國石油大學(xué)(華東);2013年
9 李靖;水力空化多孔孔板流體力學(xué)特性研究[D];天津科技大學(xué);2009年
10 孫靜;基于CFD的槽式孔板結(jié)構(gòu)設(shè)計(jì)[D];中國石油大學(xué);2007年
,本文編號:2348539
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2348539.html