冷變形工業(yè)純鈦T40板材微觀組織和晶體學(xué)特征的研究
[Abstract]:Titanium and its alloys have very important application value in the fields of aerospace, transportation, military, biological and chemical production because of good mechanical, chemical and biological properties. As a result, the titanium and its alloys have been a hot spot in the field of material science, and the researchers have conducted extensive research on the titanium and its alloys, hoping to further improve and improve the performance of the microstructure evolution law and mechanism. how to improve the plasticity and formability of titanium and its alloys has been a problem to be solved, and the main obstacle to improve the ability of titanium and its alloy at room temperature is that the deformation mechanism of titanium and its alloy is not comprehensive, and the formation of twinning is not complete. There is a lack of systematic and comprehensive understanding of the mutual coordination and competition between the mechanism of the crystal and the mechanism of the dislocation, and the research on the interaction between the two is mainly focused on the computer simulation. The lack of experimental evidence and a strong theoretical explanation. Therefore, the experimental study on the mechanism of the plastic deformation of the room temperature of the titanium and its alloy has become the focus of attention in this field. In the light of the above problems, the industrial pure titanium T40 plate is used as the research object, and the shape, the size, the crystallographic orientation and the order information of the crystal grain in the cold rolling process are characterized and analyzed by using the scanning electron microscope-backscattering electron diffraction (SEM-EBSD) technique. By establishing a simplified model, the Schmitt factor, the twin strain and the plastic deformation energy in the process of crystal growth are calculated, the law of the choice of the deformation and the crystal variation is summarized, and the factors that influence the growth of the deformed crystal are discussed. The relationship between the number of the crystal grains and the grain size and the grain shape of the crystal grain is explained. The mechanism of the choice of the crystal grain is explained, and the selection of the crystal grain and the growth of the crystal grain are predicted. In addition, a quasi-in-situ scanning electron microscope-electron backscatter diffraction (SEM-EBSD) technique was used to characterize the evolution of the microstructure and crystallographic orientation of the industrial pure titanium T40 plate in the process of tensile loading, and the morphology, appearance and location of the crystal and dislocation slip were analyzed. In this paper, a shear displacement gradient model with physical contact with the deformation mode is established from the continuous angle of the material and the coordination relation between the slip and the twin is studied, and the rationality of the model is verified. The causes of mutual excitation and mutual coordination between the slip and twin deformation modes are explained, and the rules and mechanisms of the evolution of the generation, growth and disappearance of the columnar crystal under the co-action of the local deformation state and the macroscopic loading state are further described. Because of the elastic anisotropy of the industrial pure titanium, the form of the dislocation strain field in the industrial pure titanium crystal is very complicated. Based on the theory of crystallography, a method for identifying the dislocation is proposed, which can be used to simplify the process of the dislocation identification of the transmission electron microscope. The feasibility and the accuracy of the method are verified by the identification of the dislocations in the pure titanium. The use of this method is of great significance for TEM dislocation identification. The above work is a theoretical supplement to the understanding of the further deepening of the deformation behavior and mechanism of the titanium alloy from the micro-scale, and provides the experimental parameters and the experimental basis for the computer simulation work, and lays a theoretical foundation for the design optimization, the performance prediction and the failure control of the titanium alloy.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TG146.23
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋西平,顧海澄;工業(yè)純鈦低溫拉伸和循環(huán)變形中的孿生行為[J];材料研究學(xué)報;2000年S1期
2 ;磁頭用工業(yè)純鈦箔[J];鈦工業(yè)進(jìn)展;2000年02期
3 寧興龍;世界最大的鈦制反應(yīng)器[J];鈦工業(yè)進(jìn)展;2000年05期
4 崔昌軍,彭喬,張明嘉,張洪波;交流阻抗法研究工業(yè)純鈦的性能[J];腐蝕科學(xué)與防護(hù)技術(shù);2003年06期
5 金泰來;魏建鋒;顧兆林;趙永慶;常輝;;工業(yè)純鈦在特高溫度下的氧化行為研究[J];稀有金屬材料與工程;2005年12期
6 李芳紅;張建曉;賈小斌;尉洪陽;方婧;王子偉;;石化裝置用工業(yè)純鈦的焊接[J];電焊機(jī);2007年12期
7 杜禮章;;工業(yè)純鈦板材生產(chǎn)工藝研究[J];特鋼技術(shù);2008年04期
8 林成;劉志林;尹桂麗;;非金屬元素對工業(yè)純鈦相變溫度影響的理論研究[J];稀有金屬材料與工程;2008年04期
9 何曉梅;張聰惠;楊占林;劉曉燕;趙西成;于飛;;退火對表面機(jī)械研磨處理納米化工業(yè)純鈦性能的影響[J];金屬熱處理;2013年04期
10 ;工業(yè)純鈦的焊接[J];焊接通訊;1976年01期
相關(guān)會議論文 前4條
1 祝建雯;馮毅江;李佐臣;陳婷婷;;海洋裝備用鈦現(xiàn)狀與展望[A];中國鋼結(jié)構(gòu)協(xié)會海洋鋼結(jié)構(gòu)分會2010年學(xué)術(shù)會議暨第六屆理事會第三次會議論文集[C];2010年
2 高護(hù)生;樊玉光;王金剛;陳朝達(dá);;TA2在含HC1溶液沖蝕腐蝕行為的研究[A];第三屆全國青年摩擦學(xué)學(xué)術(shù)會議論文集[C];1995年
3 張興梅;;ICP-AES法測定工業(yè)純鈦中雜質(zhì)元素含量的試驗(yàn)研究[A];第五屆全國壓力容器學(xué)術(shù)會議論文集[C];2001年
4 陳林;徐春;;工業(yè)純鈦TA2熱變形流變應(yīng)力研究[A];第十屆中國科協(xié)年會論文集(四)[C];2008年
相關(guān)博士學(xué)位論文 前3條
1 王世穎;冷變形工業(yè)純鈦T40板材微觀組織和晶體學(xué)特征的研究[D];東北大學(xué);2015年
2 常鴻;工業(yè)純鈦MAO膜的形成機(jī)制及其理化特性研究[D];吉林大學(xué);2009年
3 鄧希光;純鈦及Ti-xAl(x=2,4,6)合金動態(tài)變形行為研究[D];北京有色金屬研究總院;2014年
相關(guān)碩士學(xué)位論文 前10條
1 周鐵柱;沉積銅箔用鈦環(huán)軋制熱模擬研究[D];河南科技大學(xué);2015年
2 韓亞瑋;工業(yè)純鈦?zhàn)杂慑懝に嚨奈⒂^組織模擬[D];河南科技大學(xué);2014年
3 郭桂;深滾誘導(dǎo)的表面微納結(jié)構(gòu)對工業(yè)純鈦氧化性能的影響[D];華東理工大學(xué);2014年
4 李旭;工業(yè)純鈦的形變孿生和退火再結(jié)晶行為研究[D];中南大學(xué);2012年
5 郭敏;工業(yè)純鈦在海水中陰極極化條件下的氫脆研究[D];大連理工大學(xué);2001年
6 馬宏剛;TA2工業(yè)純鈦表面改性的攪拌摩擦加工工藝研究[D];西安建筑科技大學(xué);2010年
7 李文山;TA2工業(yè)純鈦板帶材軋制粘輥機(jī)理及影響因素研究[D];燕山大學(xué);2014年
8 劉以波;TA2工業(yè)純鈦高溫組織演變研究[D];上海交通大學(xué);2010年
9 張海麗;TA2工業(yè)純鈦在海水管系中的應(yīng)用研究[D];南京航空航天大學(xué);2010年
10 解晨;90°模具室溫ECAP變形工業(yè)純鈦的熱壓縮行為研究[D];西安建筑科技大學(xué);2013年
,本文編號:2335673
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2335673.html