納米多晶金屬的彈性和熱力學(xué)性質(zhì)研究
[Abstract]:Nanomaterials refer to materials with grain size between 1-100nm. Nanomaterials are becoming a new type of materials and are widely used in various fields. Nanometallic materials have attracted much attention due to their special properties different from coarse grains, such as their increasing hardness, yield stress, super toughness, large diffusion coefficient compared with coarse grains, excellent wear resistance and so on. Compared with coarse crystals, the Young's modulus of nanocrystalline materials decreases and the heat capacity of nanocrystalline materials increases. Understanding the elastic and thermodynamic properties of nanocrystalline metals is helpful to enhance the application value of nanocrystalline materials in various fields. This paper mainly consists of two parts. Firstly, the samples of nanocrystalline aluminum and copper with different grain sizes are constructed by Voronoi geometry method, and the initial structure is relaxed to reduce the high stress and high energy caused by large angle grain boundary. The changes of system structure, average energy and average internal stress in each process were monitored during the relaxation process, and the variation trends of different grain samples in the same relaxation process were compared and analyzed. The structure diagram of the initial structure and the relaxed sample is drawn. It is found that the proportion of the grain boundary atoms has changed and finally the stable structure has been obtained. Secondly, the cold energy curves of nanocrystalline polycrystalline and single crystal are compared by classical molecular dynamics simulation method, and the effect of grain size on elastic constants and some thermodynamic parameters of nanocrystalline aluminum and copper are calculated and analyzed. The corresponding cold energy curves are drawn by applying small tensile or compression strain to the system, and compared with the corresponding single crystal curves, it is found that the figure shape is basically the same, and the slight difference may be caused by the grain boundary. The feasibility of the simulation method is illustrated. The constant pressure molecular dynamics method is used to calculate the elastic constants. When the grain size is smaller than 10nm, it is found that the hardness of the system softens with the decrease of the size, which coincides with the inverse Hall-Petch effect. The tensile strength of the sample becomes more difficult with the increase of grain size, and the compression degree becomes relatively easy. According to the relationship between thermodynamic parameters and independent elastic constants, the thermodynamic values such as shear modulus, Poisson's ratio, Debye temperature and so on are obtained, which makes us know more about the resistance to deformation, plastic deformation, rigidity and ductility of nano-materials with small grain size. Through the detailed analysis of the elastic and thermodynamic properties of nanocrystalline metal with small particle size, it can make people fully understand the micro-nano materials and provide a strong guarantee for the better application of nanocrystalline materials.
【學(xué)位授予單位】:山西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TG111;TB383.1
【相似文獻】
相關(guān)期刊論文 前10條
1 馬文;祝文軍;張亞林;陳開果;鄧小良;經(jīng)福謙;;納米多晶金屬樣本構(gòu)建的分子動力學(xué)模擬研究[J];物理學(xué)報;2010年07期
2 宋海洋;李玉龍;;堆垛層錯和溫度對納米多晶鎂變形機理的影響[J];物理學(xué)報;2012年22期
3 李素蘭;高溫高壓下的納米多晶金剛石的燒結(jié)及其特性的研究[J];金剛石與磨料磨具工程;2001年03期
4 宋曉艷,高金萍,張久興;納米多晶體的熱力學(xué)函數(shù)及其在相變熱力學(xué)中的應(yīng)用[J];物理學(xué)報;2005年03期
5 梁海弋,王秀喜,吳恒安,王宇;納米多晶銅微觀結(jié)構(gòu)的分子動力學(xué)模擬[J];物理學(xué)報;2002年10期
6 王智民,韓基新,劉靜波;摻鑭改性鈦酸鋇納米多晶粉體的制備和表征[J];無機材料學(xué)報;2002年05期
7 馬文;祝文軍;張亞林;經(jīng)福謙;;納米多晶鐵的沖擊相變研究[J];物理學(xué)報;2011年06期
8 馬文;陸彥文;;納米多晶銅中沖擊波陣面的分子動力學(xué)研究[J];物理學(xué)報;2013年03期
9 張凱;張路青;;特性爆炸納米多晶金剛石及其新的理論技術(shù)(下)[J];超硬材料工程;2013年05期
10 張凱;張路青;;特性爆炸納米多晶金剛石及其新的理論技術(shù)(上)[J];超硬材料工程;2013年04期
相關(guān)會議論文 前6條
1 涂國榮;杜光旭;周曉華;黨海軍;王武尚;;納米多晶鐵纖維中試技術(shù)研究[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(8)[C];2007年
2 劉寧;蘇煜;;鐵電納米多晶電-力學(xué)特性的電加載頻率相關(guān)性[A];第五屆全國強動載效應(yīng)及防護學(xué)術(shù)會議暨復(fù)雜介質(zhì)/結(jié)構(gòu)的動態(tài)力學(xué)行為創(chuàng)新研究群體學(xué)術(shù)研討會論文集[C];2013年
3 成聰;陳尚達;;含孔洞納米多晶銅變形行為的分子動力學(xué)模擬[A];中國力學(xué)大會——2013論文摘要集[C];2013年
4 張久興;周身林;劉丹敏;包黎紅;;納米多晶稀土硼化物的研究與進展[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
5 王曉芳;邱若沂;謝平波;趙福利;許寧生;汪河洲;;ZnO納米多晶顆粒的受激發(fā)射及時間分辨特性[A];2006年全國光電技術(shù)學(xué)術(shù)交流會會議文集(C 激光技術(shù)與應(yīng)用專題)[C];2006年
6 王曉芳;謝平波;張一帥;趙福利;許寧生;汪河洲;;ZnO納米多晶顆粒激射模式的特性研究[A];2006年全國光電技術(shù)學(xué)術(shù)交流會會議文集(C 激光技術(shù)與應(yīng)用專題)[C];2006年
相關(guān)博士學(xué)位論文 前2條
1 馬文;沖擊壓縮下納米多晶金屬塑性及相變機制的分子動力學(xué)研究[D];國防科學(xué)技術(shù)大學(xué);2011年
2 宋海洋;納米多晶金屬材料力學(xué)性能的模擬研究[D];西北工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前4條
1 蔣春霞;納米多晶鋁及其復(fù)合材料微觀變形機理的研究[D];大連理工大學(xué);2015年
2 朱艷花;納米多晶金屬的彈性和熱力學(xué)性質(zhì)研究[D];山西大學(xué);2016年
3 康建波;摻雜納米多晶Si膜的低壓化學(xué)氣相沉積與電學(xué)特性研究[D];河北大學(xué);2007年
4 欒彩娜;Co~(2+):Mg(Ba,Sr,Ca)Al_2O_4納米復(fù)合材料的制備及其性質(zhì)的表征[D];山東大學(xué);2005年
,本文編號:2311509
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2311509.html