天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 金屬論文 >

鈀鎳合金納米粒子點(diǎn)陣的制備及其氫傳感特性

發(fā)布時(shí)間:2018-11-03 17:07
【摘要】:金屬合金納米粒子在一定程度上能改善純金屬納米粒子的一些物理化學(xué)性能。Pd納米粒子點(diǎn)陣具有吸氫響應(yīng)特性,當(dāng)在Pd納米粒子中摻入其他金屬納米粒子后,將影響其吸氫動(dòng)力學(xué)特性,有效改善其吸氫響應(yīng)特征。本論文通過(guò)制備鈀鎳合金納米粒子點(diǎn)陣,對(duì)其合金的吸氫動(dòng)力學(xué)特性進(jìn)行了研究。本論文使用雙靶材共沉積團(tuán)簇束流技術(shù)制備了鈀鎳合金納米粒子點(diǎn)陣。制備出來(lái)的樣品,尺寸分布均勻,結(jié)晶性好,并且隨著樣品中Ni含量的增加,合金納米粒子點(diǎn)陣的平均粒徑逐漸增大。本文研究了鈀鎳合金納米粒子中二元合金的存在形式,發(fā)現(xiàn)制備出來(lái)的合金樣品以混溶結(jié)構(gòu)存在,合金(111)面的面間距隨著二元合金納米粒子中鎳含量的增加而增大。本論文還研究分析了鈀鎳合金納米粒子點(diǎn)陣的吸氫響應(yīng)特性。研究表明鈀鎳合金納米粒子點(diǎn)陣對(duì)一個(gè)大氣壓內(nèi)的氫氣吸氫響應(yīng)可以分為三個(gè)區(qū)域,從低氣壓到高氣壓分別對(duì)應(yīng)鈀氫化物的α相、α相-β相和β相。當(dāng)樣品中的Ni含量大于60%時(shí),樣品不再有吸氫響應(yīng)的特征。當(dāng)氫氣氣壓處在氫化物的α相時(shí),陣列的電導(dǎo)隨氫氣壓強(qiáng)呈線性增加,變化緩慢;當(dāng)氫氣氣壓處在氫化物的α相-β相時(shí),鈀鎳合金納米粒子產(chǎn)生劇烈膨脹,電導(dǎo)的變化率也隨之迅速增加;當(dāng)氫氣氣壓處在氫化物的β相時(shí),陣列的電導(dǎo)繼續(xù)隨氫氣壓強(qiáng)而增加,但變化率非常小。在α相區(qū)域,對(duì)應(yīng)于同一個(gè)壓強(qiáng),樣品的相對(duì)電導(dǎo)值隨著Ni含量的增加呈現(xiàn)出先增大后減小的趨勢(shì),當(dāng)Ni的含量在25%的時(shí)候,其相對(duì)電導(dǎo)值最大;在α相到β相的轉(zhuǎn)變區(qū)域內(nèi),合金樣品的相對(duì)電導(dǎo)變化趨勢(shì)基本能保持一致;在p相區(qū)域時(shí),對(duì)應(yīng)于同一壓強(qiáng)樣品的相對(duì)電導(dǎo)值隨著Ni含量的增加呈現(xiàn)出先減小后增大的趨勢(shì)。綜合考慮,25%Ni含量的樣品是Pd/Ni合金樣品中性能表現(xiàn)最優(yōu)的。本論文還將鈀鎳合金納米粒子點(diǎn)陣的吸氫響應(yīng)特性與純Pd合金納米粒子點(diǎn)陣的吸氫響應(yīng)特性進(jìn)行了比較,研究表明,鈀鎳合金納米粒子點(diǎn)陣將α相的線性響應(yīng)區(qū)域拓展到2kPa之外,有利于低氣壓范圍內(nèi)的氫氣測(cè)量;鈀鎳合金納米粒子點(diǎn)陣在氫氣濃度4%的爆炸極限區(qū)域內(nèi)能產(chǎn)生非常高的響應(yīng),對(duì)于氫氣爆炸極限的監(jiān)測(cè)有很重要的意義。鈀鎳合金納米粒子點(diǎn)陣與純Pd納米粒子點(diǎn)陣對(duì)氫氣都能產(chǎn)生一個(gè)較快速的響應(yīng),但在α-β相變區(qū)間內(nèi),響應(yīng)時(shí)間有所延遲。隨著樣品中Ni含量的增加,樣品的響應(yīng)時(shí)間在整體趨勢(shì)上呈現(xiàn)出先減小后增大的現(xiàn)象,當(dāng)Ni含量達(dá)到25%時(shí),響應(yīng)時(shí)間達(dá)到最小值,并且比純Pd樣品的響應(yīng)時(shí)間要短。對(duì)傳感器的穩(wěn)定性進(jìn)行了測(cè)試。隨著吸放氫的循環(huán)次數(shù)的增加,傳感器對(duì)氫氣的電導(dǎo)響應(yīng)的基線恢復(fù)得以改善。傳感器在空氣中置放兩個(gè)半月,顯示出較好的穩(wěn)定性。
[Abstract]:To some extent, metal alloy nanoparticles can improve some physical and chemical properties of pure metal nanoparticles. Pd nanoparticles have the characteristics of hydrogen absorption response. When other metal nanoparticles are mixed in Pd nanoparticles, The kinetic characteristics of hydrogen absorption will be affected and the response characteristics of hydrogen absorption will be improved effectively. In this paper, the hydrogen absorption kinetics of palladium-nickel alloy was studied by preparing nano-particle lattice. In this paper, the palladium-nickel alloy nanoparticles lattice was prepared by double-target co-deposition cluster beam technique. The size distribution and crystallinity of the prepared samples are uniform and the average particle size of the alloy nanoparticles increases with the increase of Ni content. In this paper, the existence form of binary alloy in palladium nickel alloy nanoparticles is studied. It is found that the prepared alloy sample exists in miscible structure, and the surface spacing of alloy (111) increases with the increase of nickel content in binary alloy nanoparticles. The hydrogen absorption response of palladium-nickel alloy nanoparticles was also studied in this paper. The results show that the lattice response of palladium and nickel alloy nanoparticles to hydrogen absorption at one atmospheric pressure can be divided into three regions, from low pressure to high pressure, corresponding to 偽 phase, 偽 phase 尾 phase and 尾 phase of palladium hydride, respectively. When the Ni content in the sample is greater than 60, the sample no longer has the characteristics of hydrogen absorption response. When the hydrogen pressure is in the 偽 phase of the hydride, the conductance of the array increases linearly with the hydrogen pressure and changes slowly. When the hydrogen pressure is in the 偽-尾 phase of the hydride, the Pd-Ni alloy nanoparticles expand rapidly and the change rate of conductivity increases rapidly. When the hydrogen pressure is in the 尾 phase of the hydride, the conductance of the array continues to increase with the hydrogen pressure, but the change rate is very small. In the 偽 phase region, corresponding to the same pressure, the relative conductance value of the sample increases first and then decreases with the increase of Ni content. When the content of Ni is 25%, the relative conductance value of the sample is the largest. In the transition region from 偽 phase to 尾 phase, the change trend of relative conductance of alloy samples is basically consistent, and in the p phase region, the relative conductance value corresponding to the same pressure sample decreases first and then increases with the increase of Ni content. Taken into account, the 25%Ni content of the sample is the Pd/Ni alloy sample performance is the best. In this paper, the hydrogen absorption response of palladium nickel alloy nanoparticles lattice is compared with that of pure Pd alloy nanoparticles. The lattice of palladium and nickel alloy nanoparticles extends the linear response region of 偽 phase beyond 2kPa, which is favorable for hydrogen measurement in low pressure range. Palladium nickel alloy nanoparticles lattice can produce a very high response in the limit region of hydrogen concentration of 4%, which is of great significance for the monitoring of hydrogen explosion limit. Both palladium and nickel alloy nanoparticles and pure Pd nanoparticles can produce a rapid response to hydrogen, but the response time is delayed in the 偽-尾 phase transition region. With the increase of Ni content in the sample, the response time of the sample decreases first and then increases. When the Ni content reaches 25%, the response time reaches the minimum value, and the response time is shorter than that of the pure Pd sample. The stability of the sensor is tested. As the cycles of hydrogen absorption and desorption increase, the baseline recovery of the sensor's conductance response to hydrogen is improved. The sensor is placed in the air for two and a half months, showing good stability.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1;TG146.36

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張年軍;王瑞祥;;鈀、鎳或鈀鎳合金鍍層剝落法[J];電鍍與環(huán)保;1985年06期

2 夏振華;;鈀鎳合金電鍍[J];防腐與包裝;1986年03期

3 夏振華;;鈀鎳合金電鍍[J];防腐與包裝;1986年03期

4 郭艷麗;王艷芳;郭超;牛超;;鈀鎳合金鍍層特性研究[J];新技術(shù)新工藝;2011年07期

5 張明英;;鈀鎳合金電鍍液的測(cè)定[J];電子工藝技術(shù);1986年09期

6 張明英;原子吸收分光光度法測(cè)定鈀鎳合金電鍍液中鈀和鎳[J];冶金分析;1989年06期

7 吳柏銘;郁祖湛;徐忠倫;;滾鍍鈀鎳合金閃鍍金新工藝研究[J];電鍍與環(huán)保;1990年05期

8 岳俊培;楊防祖;田中群;周紹民;;鈀鎳合金在玻碳電極上電結(jié)晶機(jī)理[J];物理化學(xué)學(xué)報(bào);2011年06期

9 賈文樓;;滾鍍鈀鎳合金閃鍍金工藝通過(guò)部級(jí)鑒定[J];軍民兩用技術(shù)與產(chǎn)品;1989年03期

10 張年軍;;鈀鎳合金電鍍?nèi)芤篬J];電鍍與環(huán)保;1986年02期

相關(guān)會(huì)議論文 前2條

1 岳俊培;楊防祖;田中群;周紹民;;不同鎳含量鈀鎳合金電鍍及性質(zhì)表征[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年

2 Sascha Berger;Uwe Manz;Frank Oberst;;新型無(wú)氨無(wú)氯鈀鎳合金高速電鍍液[A];2011年全國(guó)電子電鍍及表面處理學(xué)術(shù)交流會(huì)論文集[C];2011年

相關(guān)碩士學(xué)位論文 前2條

1 彭星;鈀鎳合金納米粒子點(diǎn)陣的制備及其氫傳感特性[D];南京大學(xué);2015年

2 苑娟;電化學(xué)階邊精飾法合成鈀鎳合金納米線的研究[D];湖南大學(xué);2005年



本文編號(hào):2308405

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2308405.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶79374***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com