AZ91D鎂合金表面Ni-SiC復(fù)合鍍層的制備及其性能研究
[Abstract]:Magnesium alloys are light in weight and high in specific strength. The applications of magnesium alloys in aerospace, military and electronic industries have been widely concerned. How to obtain corrosion resistant magnesium alloys with high wear resistance is a hot research topic of magnesium alloys. In this paper, the pretreatment process of magnesium alloy electrodeposition was improved by adding trace Cu2 to magnesium alloy activation solution, and then Ni-SiC composite coating was prepared on magnesium alloy surface by pulse electrodeposition, and the parameters of pulse electrodeposition were optimized. The hardness, corrosion resistance and wear resistance of Ni-SiC composite coating were also studied. The electroless Ni was used as the electrodeposition pretreatment of magnesium alloy, and then the electroless nickel plated magnesium alloy was placed in acid watt bath for direct current electrodeposition (Ni,). The surface roughness of the Ni coating was larger, and the adhesion between the coating and the substrate was poor. There are local cracks and some tortoise cracks on the coating surface. Secondly, the basic pre-copper plating was used as the pretreatment process of magnesium alloy electrodeposition, and the process of basic pre-plating of Cu on magnesium alloy surface was optimized. The magnesium alloy after pre-plating Cu was deposited in acid Watt bath. The Ni coating with complete structure was obtained, which shows that the basic preplating Cu treatment has an effective protective effect on magnesium alloy. The Ni-SiC composite coating was prepared on magnesium alloy surface by pulse electrodeposition. The microstructure, composition and properties of the composite coating were analyzed. The surface structure of the Ni-SiC composite coating was complete and the SiC particles were uniformly distributed in the Ni matrix coating. With the increase of SiC content in the composite plating bath, the content of SiC in the composite coating increased, and the hardness, corrosion resistance and wear resistance of the coating increased first and then decreased. When the addition of SiC in the bath was 40 g / L, The corrosion resistance and wear resistance of the composite coating are the best. With the duty cycle of pulse current as a single factor variable, the effects of pulse current duty ratio on the microstructure, composition and properties of pulsed electrodeposition Ni-SiC composite coating on magnesium alloy surface were investigated. The results showed that when the pulse duty ratio was 50, the effect of pulse duty ratio on the microstructure, composition and properties of Ni-SiC composite coating was investigated. The Ni-SiC composite coating has the highest SiC content and the best hardness, corrosion resistance and wear resistance.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG174.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 郭志丹;夏蘭廷;楊娜;;AZ31鎂合金表面鉬酸鹽(Na_2MoO_4)轉(zhuǎn)化膜的研究[J];鑄造設(shè)備與工藝;2010年01期
2 張華云;劉治國;;工藝參數(shù)對(duì)鎂合金植酸轉(zhuǎn)化膜的影響[J];材料保護(hù);2009年08期
3 楊黎暉;李峻青;于湘;張密林;;AZ31鎂合金鉬酸鹽轉(zhuǎn)化膜[J];中國有色金屬學(xué)報(bào);2008年07期
4 崔秀芳;李慶芬;;鎂合金表面植酸轉(zhuǎn)化膜研究 Ⅱ.pH值對(duì)鎂合金植酸轉(zhuǎn)化膜的影響[J];腐蝕科學(xué)與防護(hù)技術(shù);2007年04期
5 崔秀芳;李慶芬;;鎂合金表面植酸轉(zhuǎn)化膜研究 I植酸轉(zhuǎn)化膜成膜機(jī)理與耐蝕性研究[J];腐蝕科學(xué)與防護(hù)技術(shù);2007年03期
6 李智;戴崇良;劉婭莉;朱婧;;鎂合金上硅酸鹽/鎢酸鹽復(fù)合轉(zhuǎn)化膜的研究[J];電鍍與環(huán)保;2007年01期
7 張文華,胡正前,馬晉;俄羅斯微弧氧化技術(shù)研究進(jìn)展[J];輕合金加工技術(shù);2004年01期
8 張永君,嚴(yán)川偉,樓翰一,王福會(huì),曹楚南;Mg及其合金的陽極氧化技術(shù)進(jìn)展[J];腐蝕科學(xué)與防護(hù)技術(shù);2001年04期
9 薛文彬,來永春,鄧志威,陳如意,劉誥;鎂合金微等離子體氧化膜的特性[J];材料科學(xué)與工藝;1997年02期
,本文編號(hào):2308238
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2308238.html