高應(yīng)力作用下高速鋼能量吸收效應(yīng)及組織演變
[Abstract]:Roller is the main consuming part in the process of steel production. The quality of roll determines the economic benefit of steel rolling enterprises. In order to improve the service life of roll, the material of roll is innovated constantly. High speed steel containing a large number of high hardness and high wear resistance carbides has become the development trend of roll materials. High speed steel rolls are directly related to the rolls in the rolling process. Phase contact forces the rolled piece to produce plastic deformation, so the high-speed steel is subjected to high rolling stress. Under high stress, the high-speed steel continuously absorbs and releases energy, which will inevitably affect the microstructure and properties of the high-speed steel. The macroscopic energy absorption behavior of high-speed steel under high stress and the energy absorption behavior of different carbides and matrix structures in high-speed steel were studied by static compression test and micro-nanoindentation test. The effects of energy absorption on Microstructure of high-speed steel under high stress were analyzed by XRD, SEM and TEM. After heat treatment, the microstructure of HSS is carbide + martensite + retained austenite; the carbide of V10 HSS is spherical MC type, the carbide of W10 HSS is fishbone M6C type, and the carbide of Mo10 HSS is lath M2C type; the matrix of HSS is dispersed with a large number of secondary precipitated carbides. Variety, shape, size, structure and position distribution of the matrix affect the properties of the material. The MC carbide in V10 high speed steel is spherical, which enlarges the contact area between the carbide and the matrix. The bonding degree is good, and the particle size of MC carbide is smaller and more uniform than other carbides. The energy absorbed by various materials decreases with the increase of compression times. When the material can no longer absorb more energy and the external stress continues to exert, it will cause deformation, crack initiation or fracture. It is required that the roll is subjected to periodic high stress, and the energy absorbed by W10 high speed steel is the highest, followed by V10 high speed steel and Mo10 high speed steel, which are higher than that absorbed by Cr20. Therefore, the three high speed steels can withstand more cyclic stresses and have longer service life. The results show that MC carbide has high hardness and elastic recovery after unloading, and has good energy dissipation ability. The matrix absorbs energy and induces martensitic transformation. The energy absorbed by the matrix is consumed by the martensitic transformation process, and the energy absorbed by the carbide and the matrix of V10 high speed steel is consumed by the martensitic transformation process. The results of nano-creep tests show that the creep displacement of V10 high speed steel is the smallest, and the creep strain rate sensitivity index of carbide in V10, W10, Mo10 high speed steel and Cr20 is 0.01296, 0.01549, 0.01556 respectively. The creep strain rate sensitive index of carbide in V10, W10 and Mo10 high speed steel is lower than that of Cr20. The carbide creep strain rate sensitive index in V10 high speed steel is the smallest, and it is not easy to deform under stress, which is more conducive to long-term use under high stress. During the transformation of retained austenite to martensite, a large amount of energy is absorbed, which inhibits the initiation and propagation of cracks to some extent.
【學(xué)位授予單位】:河南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG142.1;TG333.17
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王革新,解勤山;MINI-MPM連軋無縫管機(jī)組主要設(shè)備機(jī)械特征分析[J];鞍鋼技術(shù);2005年03期
2 蘇凱;余際星;徐建兵;;冷輾擴(kuò)芯輥受力及對(duì)其壽命影響分析[J];鍛壓裝備與制造技術(shù);2006年05期
3 董梅;吳文林;徐光元;浦紅;豐慧;;應(yīng)用CSP熱軋卷生產(chǎn)的冷軋與鍍鋅產(chǎn)品常見缺陷分析[J];鋼鐵;2006年07期
4 張俊明;劉軍;康永林;楊荃;;應(yīng)用RBF神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)冷連軋機(jī)軋制力[J];鋼鐵;2007年08期
5 陳太輝;;高速鋼熱軋工作輥氧化膜剝落研究[J];大型鑄鍛件;2015年05期
6 鄭申白;楊勇;范世軍;龍躍;;軋制過程仿真現(xiàn)狀及展望[J];河南冶金;2007年01期
7 鄭申白;石焱;賈立輝;楊勇;楊方敏;;連軋張力的試驗(yàn)及模型[J];鋼鐵研究學(xué)報(bào);2008年05期
8 劉相華;張廣基;;變厚度軋制過程力平衡微分方程[J];鋼鐵研究學(xué)報(bào);2012年04期
9 謝伙土;;上鋼裝置和變頻輥道的改進(jìn)設(shè)計(jì)[J];機(jī)電技術(shù);2010年01期
10 周俊峰;譚建平;;一種掃描式鑄軋板帶凸度檢測(cè)方法[J];機(jī)電一體化;2006年05期
相關(guān)會(huì)議論文 前6條
1 趙瓊;;退火鋼帶防盜門制件彎裂缺陷分析[A];2011年全國失效分析學(xué)術(shù)會(huì)議論文集[C];2011年
2 鄭申白;楊方敏;張榮華;;連軋張力的試驗(yàn)與模型[A];2007年河北省軋鋼技術(shù)與學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2007年
3 許斌;吝章國;賈耿偉;谷鳳龍;;汽車用冷軋板表面色差缺陷的研究[A];河北省2010年煉鋼—連鑄—軋鋼生產(chǎn)技術(shù)與學(xué)術(shù)交流會(huì)論文集(上)[C];2010年
4 尹堯;;粗軋機(jī)連軋微張力控制優(yōu)化[A];中國計(jì)量協(xié)會(huì)冶金分會(huì)2010年會(huì)論文集[C];2010年
5 趙海興;高雅;,
本文編號(hào):2208691
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2208691.html