鎂合金及先進高強鋼電脈沖輔助塑性成形性能研究
[Abstract]:In recent years, in order to meet the requirements of automobile lightweight, the use of magnesium alloys, advanced high strength steel (AHSS) and other light materials to manufacture automobile parts has attracted more and more attention of automobile enterprises. At the same time, the lower elastic modulus of magnesium alloy and the higher yield strength of advanced high strength steel lead to serious springback during bending deformation. These problems seriously restrict the application of these two light materials in automotive industry. The technique is a forming technique in which a current is applied to the plastic deformation zone of a material to reduce the deformation resistance and improve the plasticity of the material.The technique has been successfully applied to wire drawing, rolling and other forming processes and has achieved good results.At the same time, the current refines the grains in the material, repairs the damage and improves the surface quality. Therefore, the application of electroplastic forming technology in the stamping process of light materials has a very good application prospect. Although electroplastic forming technology has been studied for many years, the related theoretical model and practical application research are not enough. On the other hand, the exploration of electroplastic stamping process is just beginning, and the related theories and techniques need to be studied. In view of the above problems, the following work has been carried out in this paper: (1) through the AZ31B magnesium alloy and DP980 AHSS pulse. The effects of pulse current on the rheological behavior of AZ31B magnesium alloy were studied by uniaxial tensile test and isothermal uniaxial tensile test. It was proved that the electroplastic effect could reduce the flow stress and improve the plasticity of AZ31B magnesium alloy. By modifying Johnson-Cook flow stress model, the electroplastic flow stress model of AZ31B magnesium alloy considering the effect of pulse current was established, and the correctness of the model was verified by experiments. (2) The electro-pulse stress relaxation experiment and isothermal non-electric stress relaxation experiment of AZ31B magnesium alloy and QP980 AHSS were carried out. The effect of pulse current on stress relaxation behavior of QP980 high strength steel sheet was studied by experiment, and the effect of temperature on stress relaxation behavior of QP980 high strength steel sheet was analyzed. The stress relaxation model of AZ31B magnesium alloy and QP980AHSS considering the effect of pulse is deduced and established, and the correctness of the model is verified by experiments. (3) Based on the stress relaxation model and Mises yield criterion of AZ31B magnesium alloy and QP980AHSS considering the effect of pulse, the stress relaxation model under uniaxial stress state is obtained by using plane strain assumption. The model is extended to the multi-axial stress state, and the V-shaped bending springback angle prediction model assisted by electric pulse is established. The accuracy of the model is verified by experiments. The mechanism of restraining springback by electric pulse is discussed through microstructure analysis. (4) Based on the advantages of pulse current, such as reducing flow stress and improving plasticity of materials, the research and development are carried out. Several typical pulse current assisted plastic forming processes, including electric pulse assisted cylindrical drawing, roller edge wrapping and hole reaming, have been developed. The process considers the realization of forming action, the flow path of pulse current and insulation. The pulse current is successfully introduced into the plastic deformation zone of the material and is improved obviously. The above process provides a new idea for plastic forming of materials with relatively poor or difficult plasticity and has a good application prospect.
【學位授予單位】:上海交通大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TG386
【相似文獻】
相關期刊論文 前10條
1 劉漢武,張志萍,宗振奇;關于“材料塑性成形學科方向”的幾點思考[J];沈陽大學學報;2000年04期
2 黃珍媛,阮鋒,李振南,周馳,劉斌;異型管件的逐次塑性成形研究[J];機電工程技術(shù);2001年01期
3 王蛇小;;塑性成形的發(fā)展方向[J];包頭職業(yè)技術(shù)學院學報;2001年01期
4 邵明志,趙振鐸,張召鐸,韓強,王家安;不銹鋼板料塑性成形摩擦機理的研究[J];鍛壓裝備與制造技術(shù);2004年01期
5 徐新成,張水忠,廖秋慧;鋼的含碳量對溫塑性成形溫度的影響[J];熱加工工藝;2004年06期
6 郭正華,李志剛,黃重九,董湘懷;塑性成形過程摩擦測試的研究進展[J];塑性工程學報;2004年03期
7 李經(jīng)天 ,董湘懷 ,黃菊花;微細塑性成形研究進展[J];塑性工程學報;2004年04期
8 崔麗華,王寶雨,胡正寰;數(shù)值模擬技術(shù)在塑性成形中的應用與發(fā)展[J];機械制造;2005年10期
9 溫彤;陳霞;;塑性成形過程的缺陷分析模型及其應用[J];鍛壓裝備與制造技術(shù);2006年04期
10 葛恩德;周清;趙亞西;;微塑性成形的基礎研究[J];電加工與模具;2008年03期
相關會議論文 前10條
1 于德弘;趙升噸;李軍;邢光漢;王孫安;;塑性成形總體物理模擬技術(shù)及其應用[A];中國機械工程學會鍛壓學會第六屆學術(shù)年會論文集[C];1995年
2 李雷;謝水生;;非協(xié)調(diào)元在塑性成形中的應用[A];第十屆全國青年材料科學技術(shù)研討會論文集(C輯)[C];2005年
3 陳國學;曹長征;劉曉龍;耿健;;精密塑性成形模擬仿真的若干問題[A];第八屆全國塑性加工學術(shù)年會論文集[C];2002年
4 鮑光潤;;尺度效應研究現(xiàn)狀概述[A];2008年安徽省科協(xié)年會機械工程分年會論文集[C];2008年
5 蔡改貧;姜志宏;翁海珊;;低頻振動塑性成形黏彈塑性模型的體積效應分析[A];中國力學學會學術(shù)大會'2005論文摘要集(下)[C];2005年
6 孫博;胡耀波;;金屬板材單點漸進塑性成形過程的計算機模擬[A];2007高技術(shù)新材料產(chǎn)業(yè)發(fā)展研討會暨《材料導報》編委會年會論文集[C];2007年
7 李洪波;張玉華;;直齒內(nèi)齒輪精密塑性成形新工藝的三維數(shù)值模擬[A];2005年全國計算材料、模擬與圖像分析學術(shù)會議論文集[C];2005年
8 齊紅元;朱衡君;邱成;楊江天;;橢圓異型擠壓塑性成形映射理論及模腔優(yōu)化解析[A];第七屆北京青年科技論文評選獲獎論文集[C];2003年
9 黃珍媛;阮鋒;李振南;;Pro/Engineer在板材數(shù)控逐次塑性成形中的應用[A];制造業(yè)與未來中國——2002年中國機械工程學會年會論文集[C];2002年
10 黃珍媛;阮鋒;李振南;;Pro/Engineer在板材數(shù)控逐次塑性成形中的應用[A];第八屆全國塑性加工學術(shù)年會論文集[C];2002年
相關博士學位論文 前2條
1 解煥陽;鎂合金及先進高強鋼電脈沖輔助塑性成形性能研究[D];上海交通大學;2015年
2 閆小青;塑性成形中非局部摩擦的數(shù)值分析與實驗[D];南昌大學;2008年
相關碩士學位論文 前10條
1 馬寧;微細塑性成形中的尺度效應及計算機模擬技術(shù)研究[D];華中科技大學;2005年
2 張軍;微細塑性成形實驗方法及技術(shù)研究[D];華中科技大學;2005年
3 汪繼勇;塑性成形有限元方法中數(shù)學工具的開發(fā)[D];武漢理工大學;2008年
4 李經(jīng)天;微細塑性成形實驗技術(shù)研究[D];華中科技大學;2004年
5 衛(wèi)定;H62微塑性成形尺度效應及數(shù)值模擬研究[D];合肥工業(yè)大學;2008年
6 蘇曉斌;典型車用殼體零件溫塑性成形摩擦潤滑特性研究[D];上海工程技術(shù)大學;2014年
7 董培龍;微塑性成形本構(gòu)關系及超薄板微彎曲成形研究[D];江蘇大學;2009年
8 張超;晶體塑性成形的數(shù)值模擬[D];山東大學;2005年
9 朱卉;大克重鋼制平衡塊溫塑性成形CAE分析[D];上海工程技術(shù)大學;2012年
10 劉革;42CrMo鋼塑性成形中的損傷開裂研究[D];中南大學;2011年
,本文編號:2176923
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2176923.html