天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 金屬論文 >

高強(qiáng)度硼鋼熱沖壓界面熱交換系數(shù)實(shí)驗(yàn)與模擬研究

發(fā)布時(shí)間:2018-07-21 16:03
【摘要】:汽車零部件的高強(qiáng)度不但能夠提高汽車的碰撞性能而且還能減輕汽車的重量,節(jié)能、環(huán)保、輕量化將會(huì)是未來汽車發(fā)展的新方向。高強(qiáng)度鋼熱沖壓技術(shù)能夠?qū)崿F(xiàn)現(xiàn)代汽車輕量化和高強(qiáng)度的要求,這已經(jīng)被國際汽車工業(yè)認(rèn)可并且積極推行運(yùn)用在生產(chǎn)汽車零部件上。 但是,高強(qiáng)度鋼熱沖壓成形技術(shù)是一個(gè)非常復(fù)雜的過程,板料在進(jìn)行熱沖壓過程中,板料與外界發(fā)生熱輻射、熱傳導(dǎo)和熱對(duì)流,材料的降溫速度決定了相變組織并且能夠影響成形件的性能。界面熱交換系數(shù)能夠表征板料與外界的熱量交換能力,但是在熱沖壓成形工藝中板料與模具的界面熱交換系數(shù)的研究還是非常有限的,,能夠參考的資料也不多,所以本文將根據(jù)傳熱學(xué)對(duì)熱沖壓中板料和模具的界面換熱系數(shù)進(jìn)行模擬和實(shí)驗(yàn)研究。 本文通過研制實(shí)驗(yàn)裝置,研究板料在不同壓強(qiáng)下進(jìn)行熱沖壓成形時(shí)板料與模具溫度的變化,利用模擬軟件模擬實(shí)驗(yàn)過程,最后通過優(yōu)化軟件反算出不同壓強(qiáng)下板料和模具的界面熱交換系數(shù),具體內(nèi)容如下: 1.將高強(qiáng)度硼鋼板料放入加熱爐里加熱到奧氏體化溫度后保溫3分鐘,然后把加熱的板料快速移動(dòng)到模具上,通過電子萬能拉力機(jī)分別施加2MPa、6MPa、10MPa、15MPa和18MPa的載荷對(duì)板料進(jìn)行沖壓淬火,使板料內(nèi)部組織由奧氏體轉(zhuǎn)變成馬氏體,通過熱電偶測(cè)量板料和模具內(nèi)部的溫服變化,處理數(shù)據(jù)得出不同壓強(qiáng)下板料與模具溫度的變化曲線。 通過溫度曲線可以得出:熱沖壓過程中板料溫度逐漸下降,模具溫度先升高,達(dá)到最高點(diǎn)后再下降,最后板料和模具的溫度趨于一致達(dá)到平衡;隨著板料和模具溫差的減小,板料溫度的下降速度也在不斷的改變,進(jìn)而說明板料與模具之間的界面熱交換系數(shù)隨著溫差的改變而改變;在熱沖壓中,板料溫度下降速度隨著施加載荷的增大而增大。 2.利用有限元仿真軟件建立實(shí)驗(yàn)?zāi)P停?jīng)過計(jì)算獲得模擬結(jié)果。將模擬與實(shí)驗(yàn)數(shù)據(jù)通過優(yōu)化軟件進(jìn)行優(yōu)化,反算出各個(gè)載荷下板料與模具的界面熱交換系數(shù),繪制出壓強(qiáng)-界面熱交換系數(shù)關(guān)系曲線。 由曲線可以可知:隨著壓強(qiáng)的逐漸增大,板料與模具的界面熱交換系數(shù)逐漸增大。壓強(qiáng)低于10MPa時(shí),隨著壓強(qiáng)的增大,界面熱交換系數(shù)緩慢的增加,壓強(qiáng)大于10MPa時(shí),隨著壓強(qiáng)的增大,界面熱交換系數(shù)增加速度明顯加快,壓強(qiáng)與界面熱交換系數(shù)并不是簡單的線性關(guān)系。壓強(qiáng)在2~10MPa時(shí),界面熱交換系數(shù)平均值為513W/m2K,壓強(qiáng)在10~18MPa時(shí),界面熱交換系數(shù)平均值為1285W/m2K。
[Abstract]:The high strength of automobile parts can not only improve the collision performance of automobile, but also reduce the weight of automobile, save energy, protect environment and reduce weight. It will be a new direction of automobile development in the future. Hot stamping technology of high strength steel can meet the requirements of modern automobile lightweight and high strength, which has been recognized by the international automobile industry and actively applied to the production of automotive parts. However, the hot stamping technology of high strength steel is a very complicated process. During the hot stamping process of sheet metal, heat radiation, heat conduction and heat convection occur between the sheet metal and the outside world. The cooling rate of the material determines the microstructure of the phase change and can affect the properties of the forming parts. The interfacial heat exchange coefficient can represent the heat exchange ability between sheet metal and the outside world, but the research on the interfacial heat exchange coefficient between sheet metal and die in hot stamping process is still very limited. In this paper, the heat transfer coefficient between sheet metal and die is simulated and experimentally studied according to heat transfer theory. In this paper, an experimental device is developed to study the change of sheet metal and die temperature during hot stamping forming under different pressures. The simulation software is used to simulate the experimental process. Finally, the interfacial heat transfer coefficient between sheet metal and die under different pressures is calculated by optimizing software. The specific contents are as follows: 1. The high strength boron steel plate was heated to austenitizing temperature for 3 minutes after heating in a heating furnace, and then the heated plate was moved quickly to the die. The sheet metal was punched and quenched by applying the load of 2MPa1 6MPa10MPa1 15MPa and 18MPa respectively by the electronic universal drawing machine. The internal structure of the plate is changed from austenite to martensite. The temperature change of the plate and die is measured by thermocouple, and the changing curve of the temperature between the sheet and the die under different pressure is obtained by processing the data. Through the temperature curve, it can be concluded that the temperature of the sheet metal decreases gradually during hot stamping, the temperature of the die rises first, then decreases after reaching the highest point, finally the temperature of the sheet metal and the die reaches a balance; with the decrease of the temperature difference between the sheet metal and the die, the temperature difference between the sheet metal and the die decreases. The decreasing rate of sheet metal temperature is changing constantly, which indicates that the interfacial heat exchange coefficient between sheet metal and die changes with the change of temperature difference. The decreasing speed of sheet metal temperature increases with the increase of applied load. 2. 2. The finite element simulation software is used to establish the experimental model, and the simulation results are obtained by calculation. The simulation and experimental data are optimized by optimization software, and the interfacial heat exchange coefficient between sheet metal and die under various loads is calculated, and the relation curve between pressure and interface heat exchange coefficient is drawn. It can be seen from the curve that the interfacial heat transfer coefficient between sheet metal and die increases with increasing pressure. When the pressure is less than 10 MPA, the interfacial heat transfer coefficient increases slowly with the increase of pressure. When the pressure is greater than 10 MPA, the increasing speed of interfacial heat transfer coefficient is obviously accelerated. The relationship between pressure and interfacial heat transfer coefficient is not linear. The average interfacial heat transfer coefficient is 513W / m2K when the pressure is 210MPa, and 1285W / m2K. when the pressure is 100.18MPa.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG306

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 方萍;金峰;邢振華;彭昌海;吳智深;;基于遺傳算法的多孔體一維瞬態(tài)導(dǎo)熱反問題[J];重慶理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年11期

2 劉紅生;包軍;邢忠文;宋寶玉;楊玉英;;高強(qiáng)鋼板熱沖壓成形熱力耦合數(shù)值模擬[J];材料科學(xué)與工藝;2010年04期

3 張立文;朱德才;邢磊;張國梁;韋榮選;;鋁合金與5CrMnMo模具鋼界面接觸換熱系數(shù)實(shí)驗(yàn)研究[J];大連理工大學(xué)學(xué)報(bào);2009年01期

4 趙劍鋒,王安良,楊春信;接觸傳熱表面粗糙度曲線的統(tǒng)計(jì)特征[J];低溫工程;2003年04期

5 朱德才;張立文;裴繼斌;張國梁;韋榮選;;固體界面接觸換熱系數(shù)影響因素的實(shí)驗(yàn)研究[J];鍛壓技術(shù);2008年01期

6 張志強(qiáng);;B柱熱沖壓數(shù)值分析研究[J];鍛壓技術(shù);2010年03期

7 康永林;陳貴江;朱國明;宋仁伯;;新一代汽車用先進(jìn)高強(qiáng)鋼的成形與應(yīng)用[J];鋼鐵;2010年08期

8 王敏;張春;肖海峰;李兵;;可淬火硼鋼板熱成形過程中的傳熱行為[J];鍛壓技術(shù);2014年01期

9 陳艷;郭慶平;;并行遺傳算法在導(dǎo)熱反問題中的應(yīng)用[J];計(jì)算機(jī)與數(shù)字工程;2007年03期

10 白博峰,郭烈錦,陳學(xué)俊;最小二乘原理求解多維瞬態(tài)導(dǎo)熱反問題[J];計(jì)算物理;1997年Z1期

相關(guān)博士學(xué)位論文 前1條

1 隋大山;鑄造凝固過程熱傳導(dǎo)反問題參數(shù)辨識(shí)技術(shù)研究[D];上海交通大學(xué);2008年



本文編號(hào):2136046

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2136046.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶51551***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲精品国男人在线视频| 日韩一区二区三区18| 国产一区二区三区成人精品| 国产91人妻精品一区二区三区| 欧美一级特黄特色大色大片| 久久精品亚洲精品国产欧美| 日本不卡在线视频中文国产| 欧美成人一区二区三区在线 | 国产成人精品99在线观看| 欧美高潮喷吹一区二区| 一区二区三区日本高清| 不卡视频免费一区二区三区| 在线免费视频你懂的观看| 亚洲色图欧美另类人妻| 超碰在线免费公开中国黄片| 欧美日韩国产免费看黄片| 99久久人妻中文字幕| 精品人妻一区二区三区免费看| 国产av精品高清一区二区三区| 国产白丝粉嫩av在线免费观看| 亚洲性生活一区二区三区| 日韩国产欧美中文字幕| 亚洲内射人妻一区二区| 国产又色又爽又黄的精品视频| 亚洲男人的天堂久久a| 色好吊视频这里只有精| 尤物天堂av一区二区| 色涩一区二区三区四区| 激情爱爱一区二区三区| 精品亚洲一区二区三区w竹菊| 欧美性欧美一区二区三区| 午夜亚洲精品理论片在线观看| 国产伦精品一区二区三区精品视频| 国产欧美日韩精品一区二区| 国产一区二区三区四区中文| 99久久无色码中文字幕免费| 欧美日韩精品综合一区| 日韩特级黄色大片在线观看| 亚洲欧洲日韩综合二区| 日韩精品区欧美在线一区| 亚洲中文字幕免费人妻|