陰極弧與磁控濺射復(fù)合技術(shù)制備耐磨涂層
本文選題:陰極弧與磁控濺射復(fù)合技術(shù) + 固體耐磨涂層 ; 參考:《大連理工大學(xué)》2015年博士論文
【摘要】:隨著高推重比發(fā)動機和大型發(fā)動機的研發(fā),解決高載荷條件下耐磨潤滑問題日益迫切。類金剛石涂層由于其具有低摩擦系數(shù)、高耐磨性等優(yōu)點業(yè)已成為解決軍工產(chǎn)品耐磨問題的首選材料。但是單層結(jié)構(gòu)類金剛石涂層的承載能力較差,且內(nèi)應(yīng)力較大、膜基界面結(jié)合力較差,在高載荷下易于發(fā)生斷裂、剝離等失效行為。為了解決這一問題,國外正在研發(fā)粘結(jié)層(金屬層)+承載層(耐磨層)+潤滑層(DLC)這種耐磨潤滑涂層體系。通過功能化梯度過渡層與承載層的設(shè)計,可使涂層的組分和微觀結(jié)構(gòu)沿涂層生長方向梯度漸變,顯著提高涂層與基體的結(jié)合強度和涂層的抗載荷性能。另一方面國際上涂層制備技術(shù)正朝著大面積加工、復(fù)合加工和高表面質(zhì)量加工方向發(fā)展,鑒于此本論文首先進(jìn)行了陰極弧與磁控濺射技術(shù)的復(fù)合研究,從復(fù)合源技術(shù)研究入手,解決矩形陰極弧源大面積燃燒和可控?zé)g問題,并將其與中頻磁控濺射復(fù)合,從而實現(xiàn)大面積加工和高表面質(zhì)量涂層。在此基礎(chǔ)之上,再進(jìn)行具有高承載力的類金剛石耐磨涂層研究。本論文主要包括以下幾個部分: (1)首先設(shè)計并優(yōu)化了矩形大面積可控弧靶(尺寸為430mmx125mm),通過可編程線圈電源設(shè)計,利用線圈電流對磁場產(chǎn)生微擾作用,實現(xiàn)對弧斑燃燒軌跡的控制,使得其按照掃描式軌道進(jìn)行燃燒,大大提高靶材刻蝕均勻性和靶材利用率;將可控弧靶與中頻磁控濺射靶復(fù)合到同一設(shè)備中,以滿足制備多層結(jié)構(gòu)涂層的需求。對復(fù)合源設(shè)備,通過磁場模擬測試及等離子體密度測試等手段對沉積環(huán)境進(jìn)行表征,結(jié)果表明復(fù)合源設(shè)備等離子體均勻性較好,復(fù)合源開啟時真空室內(nèi)等離子體密度明顯高于單個源開啟時的等離子體密度值,為8.98×1011/cm3左右,真空室內(nèi)等離子體密度在101l/cm3以上的有效工作區(qū)為φ400×450mm2; 利用復(fù)合源設(shè)備提供的不同技術(shù),對比研究了陰極弧沉積、先弧沉積后磁控濺射沉積、陰極弧與磁控濺射共沉積、磁控濺射沉積四種工藝制備的氮化鈦涂層,通過對氮化鈦涂層表面斷面形貌分析,可以看出復(fù)合源沉積的涂層相對于陰極弧沉積樣品涂層表面質(zhì)量明顯提高,同時組織結(jié)構(gòu)已無柱狀晶生長特征,顯示為致密的結(jié)構(gòu);在400N載荷下,與WC球?qū)δr,陰極弧與磁控濺射復(fù)合沉積的涂層耐磨壽命最長,為116s。這主要是由于在樣品沉積過程中基體隨樣品架公自轉(zhuǎn),交替進(jìn)行弧靶和磁控靶沉積,使得磁控濺射與陰極弧兩種技術(shù)發(fā)揮優(yōu)勢互補作用,制備的涂層呈現(xiàn)出特有的層狀致密結(jié)構(gòu),這種結(jié)構(gòu)有利于提高涂層高載荷下的耐磨性能。 (2)針對類金剛石支撐層部分,采用陰極弧與磁控濺射復(fù)合技術(shù),對比研究了Cr/CrN多層結(jié)構(gòu)涂層,包括不同Cr/CrN周期多層和Cr/CrN梯度多層,以便摸索最佳支撐層結(jié)構(gòu)方案。通過對涂層表面斷面、晶體結(jié)構(gòu)、成分、硬度、膜基結(jié)合力、殘余應(yīng)力和摩擦學(xué)性能的表征,發(fā)現(xiàn)不同調(diào)制多層結(jié)構(gòu)影響著Cr/CrN涂層的晶體結(jié)構(gòu)及殘余應(yīng)力狀態(tài),進(jìn)而影響其力學(xué)性能和支撐能力。不同周期Cr/CrN涂層的膜基結(jié)合力、硬度和耐磨性能等均隨著調(diào)制層數(shù)目減少而增強,相對于Cr/CrN周期結(jié)構(gòu)多層,梯度Cr/CrN涂層具有最高的硬度,維氏硬度972Hv和納米硬度27.8GPa(微米硬度為2N載荷下測試),結(jié)合力高達(dá)62N,在100N載荷下與WC球?qū)δ?其磨損率最低,為32.54×10-6mm3/Nm。梯度結(jié)構(gòu)Cr/CrN涂層由于在制備過程中以100sccm/step的方式逐漸增加氮氣流量,使得涂層內(nèi)形成成分連續(xù)變化和硬度連續(xù)變化,涂層硬度和應(yīng)力之間具有良好的匹配,使得其具有最優(yōu)耐磨性能和最佳支撐能力。梯度結(jié)構(gòu)Cr/CrN涂層是可用于具有高承載能力的碳基復(fù)合涂層承載層的最佳選擇。 (3)在最佳結(jié)構(gòu)支撐層(梯度結(jié)構(gòu)Cr/CrN支撐層)基礎(chǔ)上,利用陰極弧、磁控濺射和分解C2H2氣體的化學(xué)氣相沉積技術(shù),制備具有過渡層、承載層和減磨頂層的類金剛石涂層,其涂層結(jié)構(gòu)為Cr/(Cr/CrN梯度層)/CrCN/CrC/Cr-DLC,頂層Cr-DLC中金屬Cr的梯度摻雜量可通過調(diào)節(jié)弧靶電流控制弧靶中毒速度實現(xiàn)。通過對比發(fā)現(xiàn)弧靶電流為120A制備的涂層綜合性能最好,硬度高達(dá)36.5GPa,結(jié)合力為52N,涂層內(nèi)sp3鍵含量最高;而對具有不同結(jié)構(gòu)支撐層的Cr-DLC復(fù)合涂層進(jìn)行球盤方式摩擦磨損測試,于干摩擦下與WC球?qū)δ?600轉(zhuǎn)(測試載荷為100N),具有梯度支撐層的Cr-DLC復(fù)合涂層磨痕深度最淺(為7.241μm),磨損率最低,為13.8×10-7mm3/Nm,相對于無CrN支撐層的Cr-DLC復(fù)合涂層其耐磨性能提高了近10倍。 基于功能梯度過渡、梯度摻雜的多層膜成膜思想,采用陰極弧與磁控濺射復(fù)合技術(shù),通過優(yōu)化承載層(Cr/CrN)與潤滑層(DLC)結(jié)構(gòu)方案,制備出具有梯度多層結(jié)構(gòu)的Cr-DLC復(fù)合涂層,厚度大于13.5μm,在高載荷下表現(xiàn)出很好的應(yīng)用前景。
[Abstract]:With the development of high thrust weight ratio engine and large engine, it is becoming more and more urgent to solve the problem of wear-resistant lubrication under high load conditions. The diamond like coating has become the first choice to solve the wear resistance of military products because of its low friction coefficient and high wear resistance. But the bearing capacity of the single layer diamond like coating is poor, and In order to solve this problem, in order to solve this problem, the wear-resistant coating system of adhesive layer (metal layer) + bearing layer (wear-resistant layer) + lubricating layer (DLC) is being developed abroad. Through the design of functionalized gradient transition layer and bearing layer, the coating can be made. The composition and microstructure of the coating gradually change along the direction gradient of the coating growth, which significantly improves the bonding strength of the coating and the substrate and the load resistance of the coating. On the other hand, the coating preparation technology is facing the large area, the composite processing and the high surface quality processing are developing. In this paper, the cathode arc and magnetron sputtering technique is first carried out in this paper. The complex study of the operation, starting with the research of composite source technology, solves the problem of large area combustion and controllable ablation of rectangular cathode arc source, and compounded it with medium frequency magnetron sputtering, so as to achieve large area and high surface quality coating. On this basis, the research on high bearing capacity of diamond like wear resistant coating is carried out. The main package of this paper is the main package The following are the following parts:
(1) first, the rectangular large area controllable arc target (size 430mmx125mm) is designed and optimized. Through the design of the programmable coil power supply, the coil current is used to produce the perturbation of the magnetic field to realize the control of the trajectory of the arc spot combustion, which makes it burning according to the scanning orbit, and greatly improves the uniformity of the target etching and the utilization rate of the target. The arc target and the medium frequency magnetron sputtering target are compounded to the same equipment to meet the needs of preparing the multilayer structure coating. The composite source equipment is characterized by magnetic field simulation test and plasma density test. The results show that the plasma uniformity of the composite source is better, and the vacuum chamber is separated when the composite source is opened. The density of the plasma is obviously higher than that of the single source. It is about 8.98 x 1011/cm3, and the effective working area of the plasma density above 101l/cm3 in the vacuum chamber is 400 x 450mm2.
Using the different technology provided by the composite source, the cathode arc deposition, the magnetron sputtering deposition after the arc deposition, the co deposition of the cathode arc and the magnetron sputtering, and the magnetron sputtering deposition of the four kinds of titanium nitride coatings have been studied. By analyzing the surface profile of the titanium nitride coating, it can be seen that the coating of the composite source deposited relative to the cathode. The surface quality of the arc deposited sample coating is obviously improved, and the structure of the structure has no columnar crystal growth and shows a compact structure. Under the load of 400N, the wear resistance life of the coating deposited by the cathode arc and magnetron sputtering is the longest, which is mainly due to the rotation of the matrix with the sample frame during the sample deposition. The deposition of arc target and magnetic target makes the two technologies of magnetron sputtering and cathode arc complementary to each other. The prepared coating presents a unique and compact structure. This structure helps to improve the wear resistance of the coating under high load.
(2) for the diamond like support layer, using the cathode arc and magnetron sputtering composite technology, the Cr/CrN multilayer coating, including different Cr/CrN periodic multilayer and Cr/CrN gradient multilayer, is studied in order to find out the best support layer structure scheme. The characterization of tribological properties shows that the structure and residual stress state of the Cr/CrN coating are affected by different modulation multilayer structures, and then the mechanical properties and supporting capacity of the coatings are influenced. The adhesion, hardness and wear resistance of the film based on the different cycle Cr/CrN coatings are enhanced with the decrease of the number of modulation layers, and the multilayer of the Cr/CrN periodic structure. The gradient Cr/CrN coating has the highest hardness, the hardness 972Hv of Vivtorinox and the nano hardness 27.8GPa (microhardness of 2N under 2N load), the binding force is as high as 62N, and the wear rate is the lowest under 100N load with the WC ball, and the 32.54 x 10-6mm3/Nm. gradient structure Cr/CrN coating gradually increases the nitrogen flow in the process of 100sccm/step. As a result, the continuous change in the composition of the coating and the continuous change of the hardness and the good match between the hardness and the stress of the coating make the coating have the best wear resistance and the best support ability. The gradient structure Cr/CrN coating is the best choice for the bearing layer of a carbon based composite coating with high bearing capacity.
(3) on the basis of the best structural support layer (the gradient structure Cr/CrN support layer), the CVD coating with the cathode arc, magnetron sputtering and decomposition of C2H2 gas is used to prepare the diamond like coating with the transition layer, the bearing layer and the antiwear top layer. The coating structure is Cr/ (Cr/ CrN gradient layer) /CrCN/CrC/Cr-DLC, the gradient of metal Cr in the top layer Cr-DLC is mixed. The impurity can be controlled by the arc target current to control the arc target poisoning speed. By contrast, it is found that the coating has the best comprehensive performance, the hardness is up to 36.5GPa, the bonding force is 52N, the SP3 bond in the coating is the highest, and the Cr-DLC composite coating with different structure support layer is tested by the friction and wear test of the ball disk mode, and at the same time, the 120A composite coating with different structure support layer is dry and worn. The wear resistance of the Cr-DLC composite coating with the gradient support layer is the shallower (7.241 m), the wear rate is the lowest, and the wear rate is 13.8 x 10-7mm3/Nm. The wear resistance of the Cr-DLC composite coating is nearly 10 times higher than that of the Cr-DLC composite coating without the CrN support layer.
Based on the functionally gradient transition and gradient doped multilayer film formation, the Cr-DLC composite coating with a gradient multilayer structure is prepared by using the cathode arc and magnetron sputtering composite technology. By optimizing the structure of the bearing layer (Cr/CrN) and the lubricating layer (DLC), the thickness is more than 13.5 mu m, showing a good application prospect under high load.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TG174.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉家浚,郭鳳煒;一種摩擦表面自修復(fù)技術(shù)的應(yīng)用效果及分析[J];中國表面工程;2004年03期
2 楊娟;聶朝胤;陳志謙;謝紅梅;文曉霞;盧春燦;;偏壓對電弧離子鍍CrN_x薄膜結(jié)構(gòu)和機械性能的影響[J];表面技術(shù);2008年03期
3 胡志彪;李賀軍;付前剛;陳強;王蘭英;;低摩擦系數(shù)固體潤滑涂層研究進(jìn)展[J];材料工程;2006年03期
4 李成明,孫曉軍,張勇,李桂英,曹爾妍,唐偉忠,呂反修;電弧離子鍍薄膜中的顆粒尺寸及其影響的掃描電鏡觀察[J];電子顯微學(xué)報;2004年03期
5 肖曉玲;;納米多層膜的研究進(jìn)展[J];材料研究與應(yīng)用;2007年01期
6 陳云霞,王博,劉維民;納米PbS-TiO_2復(fù)合薄膜的制備和摩擦學(xué)性能[J];過程工程學(xué)報;2002年04期
7 常天海;無屏蔽罩的矩形平面磁控濺射靶的設(shè)計[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2003年01期
8 湯旭東,王小峰,龍振湖;減少陰極弧金屬等離子體源液滴的技術(shù)措施[J];機械工程師;2003年06期
9 張緒壽,余來貴,陳建敏;表面工程摩擦學(xué)研究進(jìn)展[J];摩擦學(xué)學(xué)報;2000年02期
10 王慧,夏為民,,金元生;含碳化鎢硬相鎳基涂層耐磨粒磨損性能研究[J];摩擦學(xué)學(xué)報;1995年03期
本文編號:2071214
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2071214.html