曲面混合磁流體數(shù)控研磨關鍵技術研究
本文選題:混合磁流體 + 曲面研磨; 參考:《武漢理工大學》2015年碩士論文
【摘要】:機械加工中的光整技術就是在工件型面精度得到確保的情況下,以提升工件表面質(zhì)量、降低工件表面粗糙度值為目的的各種機械加工技術、方法統(tǒng)稱。零件表面在光整加工的作用下,很大程度上提高其各種性能。模具工件大部分加工工序已完成了自動化,然而工件生產(chǎn)加工的最終工序——零件表面的光整加工卻依然徘徊在手工加工的階段,大大影響了我國的精密制造業(yè)的發(fā)展;旌洗帕黧w研磨的方法是在傳統(tǒng)研磨的基礎上,利用外加磁場以及磁性磨料形成具有一定剛度“磁刷”進行研磨的一種新型的光整加工技術,且由于具有柔性、自適應性等特點被廣泛使用。本文對磁流體曲面研磨去除量的規(guī)律進行了分析,針對去除規(guī)律設計研磨頭軌跡的自適應控制系統(tǒng),以期獲得等粗糙度的研磨。首先,對混合磁流體的宏觀以及微觀去除機理進行分析,著重研究了研磨頭軌跡以及研磨間隙對磁流體曲面研磨的影響,在常規(guī)“之”字形刀具軌跡上提出了適用于曲面磁流體研磨的研磨頭軌跡。其次,本文在實驗室平面研磨試驗裝置的基礎上提出整體結(jié)構與控制系統(tǒng)方案,著重分析曲面研磨頭結(jié)構,并運用ANSYS對比開槽與不開槽磁極頭產(chǎn)生的磁場。對曲面研磨裝置進行功能分析,提出了集加工與測量一體的整體控制方案。接著,對激光測頭的運動軌跡進行規(guī)劃,根據(jù)工件表面模型進行分塊掃描,平緩區(qū)域采用較大的行間距,陡壁區(qū)域采用較小的行間距。在常用的跟蹤算法模型上,根據(jù)待測工件表面的Z向坐標的讀數(shù)的反饋來自適應的調(diào)整跟蹤的方法。最后,利用VC++和OpenGL進行自適應的研磨頭軌跡規(guī)劃,利用鏈表結(jié)構進行數(shù)據(jù)存儲。將曲面模型離散由三角面片構成的STL模型,根據(jù)第二章提出的研磨頭軌跡規(guī)劃設置截面行間距,利用截面法求得研磨頭與工件表面刀觸點的軌跡,在刀觸點的軌跡上按照研磨頭半徑以及研磨間隙偏置生成刀位點的軌跡,運用實例驗證該軌跡。
[Abstract]:The finishing technology in mechanical processing is a kind of mechanical processing technology which aims to improve the surface quality of the workpiece and reduce the surface roughness value of the workpiece under the condition that the workpiece surface precision is ensured, and the method is generally called. The parts surface can greatly improve its various properties under the effect of finishing. Automatic sequence has been completed. However, the final process of the production and processing of the workpiece, the finishing process of the surface of the parts is still hovering in the stage of manual processing, which greatly affects the development of our country's precision manufacturing industry. A new finishing technology for grinding with fixed stiffness "magnetic brush" is widely used because of its flexibility and adaptability. In this paper, the law of the removal of magnetic fluid surface is analyzed. The adaptive control system for designing the trajectory of the grinding head is designed to obtain the grinding of the roughness. First, The macro and micro removal mechanism of the mixed magnetic fluid is analyzed, and the influence of the track of the grinding head and the grinding clearance on the magnetic fluid surface grinding is emphatically studied. The track of the grinding head suitable for the surface magnetic fluid grinding is put forward on the track of the conventional "the" shaped cutter. Secondly, the base of this paper is based on the laboratory plane grinding test device. The whole structure and control system scheme is put forward, and the surface grinding head structure is emphatically analyzed, and the magnetic field produced by the slotting and non grooving magnetic pole head is compared with ANSYS. The function analysis of the surface grinding device is made and the integrated control scheme is put forward. Then, the trajectory of the laser head is planned, and the work is based on the work. The surface model of the surface is divided into block scanning, the flat area adopts the larger row spacing and the steep wall area adopts the smaller row spacing. On the common tracking algorithm model, the adaptive tracking method is derived from the adaptive feedback method based on the feedback of the Z to coordinate readings on the surface of the workpiece to be measured. Finally, the adaptive grinding head trajectory planning is made using VC++ and OpenGL. Using the chain table structure to store the data, the surface model is discrete STL model composed of triangular patches. According to the trajectory planning of the grinding head set up in the second chapter, the cross section spacing is set. The path of the grinding head and the surface of the workpiece surface is obtained by the cross section method, which is generated on the path of the cutter contact according to the radius of the grinding head and the grinding gap. The trajectory of the knife site is verified by an example.
【學位授予單位】:武漢理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TG596
【參考文獻】
相關期刊論文 前10條
1 計時鳴;李琛;譚大鵬;袁巧玲;池永為;趙凌寒;;基于Preston方程的軟性磨粒流加工特性[J];機械工程學報;2011年17期
2 謝晉;鄒明山;崔曉玲;;復雜自由曲面曲率分布特征對數(shù)控銑削性能的影響[J];機械工程學報;2009年11期
3 蘆亞萍;馬季;蔡軍偉;王龍山;;模具自由曲面磁力超精研磨控制系統(tǒng)[J];農(nóng)業(yè)機械學報;2006年07期
4 趙玉剛;;磁粒光整加工技術的應用與發(fā)展[J];現(xiàn)代制造技術與裝備;2006年02期
5 樂廣軍,周宏甫;離散數(shù)據(jù)曲面的三軸數(shù)控粗加工代碼生成算法[J];現(xiàn)代制造工程;2005年06期
6 劉金義,侯寶明;STL格式實體的快速拓撲重建[J];工程圖學學報;2003年04期
7 丁漢,朱利民,熊振華;復雜曲面快速測量、建模及基于測量點云的RP和NC加工[J];機械工程學報;2003年11期
8 莊海軍,周儒榮,安魯陵,周來水;實體模型的三軸數(shù)控粗加工刀軌生成算法[J];計算機輔助設計與圖形學學報;2003年01期
9 許新建,胡俊,王宇晗;三維實體數(shù)字化測量及數(shù)控加工一體化技術的研究現(xiàn)狀[J];機械制造;2002年10期
10 柯映林,肖堯先,李江雄;反求工程CAD建模技術研究[J];計算機輔助設計與圖形學學報;2001年06期
相關博士學位論文 前1條
1 鞠華;逆向工程中自由曲面的數(shù)據(jù)處理與誤差補償研究[D];浙江大學;2003年
相關碩士學位論文 前4條
1 葉楠;弱堿性Fe_3O_4水基磁流體的制備與穩(wěn)定機理研究[D];南昌大學;2013年
2 劉洋;模具自由表面磁力研磨的技術研究[D];吉林大學;2008年
3 徐立軍;曲面數(shù)字化磁力研磨加工技術基礎研究[D];浙江大學;2004年
4 王興祥;基于自由曲面磁性研磨永磁磁極頭開發(fā)與實驗研究[D];太原理工大學;2003年
,本文編號:2023656
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2023656.html