基于S曲線的數(shù)控系統(tǒng)自適應(yīng)樣條插補算法研究
本文選題:自適應(yīng)插補算法 + 速度限制曲線; 參考:《浙江理工大學(xué)》2015年碩士論文
【摘要】:插補技術(shù)是數(shù)控系統(tǒng)實現(xiàn)軌跡運動控制的基礎(chǔ),是目前數(shù)控技術(shù)急需提高和完善的關(guān)鍵環(huán)節(jié)。插補算法的優(yōu)劣將直接影響數(shù)控系統(tǒng)的性能。其中樣條插補技術(shù)更是實現(xiàn)高速、高精度數(shù)控加工的關(guān)鍵。因此,本文對數(shù)控系統(tǒng)中B樣條曲線插補算法進(jìn)行了研究,主要包括以下內(nèi)容: 在文章第二章介紹了數(shù)控系統(tǒng)中常用的樣條曲線,包括多項式曲線、參數(shù)三次樣條曲線、B樣條曲線以及NURBS曲線,并給出了與曲線相對應(yīng)的構(gòu)造過程和表示形式。其中重點介紹了B樣條曲線,并通過計算機(jī)編程實現(xiàn)了控制點反算、樣條繪制等功能,為第四章研究樣條插補算法奠定理論基礎(chǔ)。 在文章第三章研究了數(shù)控系統(tǒng)的加減速控制方法,介紹常見的直線加減速方法、指數(shù)加減速方法、三角函數(shù)加減速方法,重點研究了S型加減速方法,,給出一種基于三種約束條件(位移約束、速度約束和加速度約束)的規(guī)劃方法,并通過補償離散化后的精度損失提高整體規(guī)劃性能。在一般S型加減速模型的基礎(chǔ)上,通過推導(dǎo)建立了始末速度不為零的數(shù)學(xué)模型,該模型將應(yīng)用于樣條插補算法中加減速控制的實現(xiàn)。 在文章第四章研究了數(shù)控系統(tǒng)中的樣條插補算法,介紹了現(xiàn)有樣條插補算法,尤其是自適應(yīng)樣條插補算法。在此基礎(chǔ)上結(jié)合樣條理論和S型加減速控制方法,設(shè)計了一種基于S型加減速控制方法的自適應(yīng)樣條插補算法,該算法根據(jù)給定的加工精度、最大進(jìn)給速度以及最大加速度等要求,在綜合考慮弓高誤差和法向加速度限制等情況下,求取樣條曲線的速度限制曲線,并依據(jù)速度限制曲線和始末速度不為零的加減速模型完成樣條插補。 最后,通過仿真、實驗驗證了算法的可行性和實用性,并將該算法應(yīng)用于自主研制的數(shù)控運動平臺上,性能表現(xiàn)良好。
[Abstract]:Interpolation technology is the foundation of NC system to realize trajectory motion control, and it is the key link to improve and perfect the NC technology. Interpolation algorithm will directly affect the performance of CNC system. The spline interpolation technology is the key to high-speed and high-precision NC machining. Therefore, this paper studies the interpolation algorithm of B-spline curve in numerical control system, including the following contents: in the second chapter, we introduce the spline curve, including polynomial curve, which is commonly used in CNC system. Parameter cubic spline curve B spline curve and Nurbs curve are given and the corresponding construction process and representation form are given. The B-spline curve is introduced emphatically, and the functions of control point inverse calculation and spline drawing are realized by computer programming, which lays a theoretical foundation for the research of spline interpolation algorithm in Chapter 4. In the third chapter of the paper, the acceleration and deceleration control methods of NC system are studied. The common linear acceleration and deceleration methods, exponential acceleration and deceleration methods, trigonometric function acceleration and deceleration methods are introduced, and the S-type acceleration and deceleration methods are emphatically studied. A programming method based on three constraints (displacement constraint, velocity constraint and acceleration constraint) is presented, and the overall planning performance is improved by compensating the discrete precision loss. Based on the general S-type acceleration and deceleration model, a mathematical model of non-zero velocity is established by derivation. The model will be applied to the realization of acceleration and deceleration control in spline interpolation algorithm. In the fourth chapter, the spline interpolation algorithm in numerical control system is studied, and the existing spline interpolation algorithm, especially the adaptive spline interpolation algorithm, is introduced. On the basis of this, an adaptive spline interpolation algorithm based on S-type acceleration and deceleration control method is designed, which is based on the spline theory and S-type acceleration and deceleration control method. The algorithm is based on the given machining accuracy. When the maximum feed velocity and the maximum acceleration are taken into account, the velocity limit curve of the sampling strip curve is obtained by considering the error of arch height and the limit of normal acceleration. The spline interpolation is completed on the basis of the velocity limiting curve and the acceleration and deceleration model without zero velocity at the beginning and end. Finally, the feasibility and practicability of the algorithm are verified by simulation, and the algorithm is applied to the self-developed CNC motion platform, and the performance of the algorithm is good.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TG659
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張得禮;周來水;;基于進(jìn)給速度自適應(yīng)控制的NURB曲線的智能插補(英文)[J];Chinese Journal of Aeronautics;2007年05期
2 彭芳瑜;何瑩;李斌;;NURBS曲線高速插補中的前瞻控制[J];計算機(jī)輔助設(shè)計與圖形學(xué)學(xué)報;2006年05期
3 梁宏斌;王永章;李霞;;自動調(diào)節(jié)進(jìn)給速度的NURBS插補算法的研究與實現(xiàn)[J];計算機(jī)集成制造系統(tǒng);2006年03期
4 吳繼春;唐小琦;陳吉紅;周會成;;一種實時快速NURBS插補算法研究與實現(xiàn)[J];計算機(jī)集成制造系統(tǒng);2011年06期
5 潘敏,鄔義杰,冷洪濱;數(shù)控系統(tǒng)加減速控制方法的研究[J];制造業(yè)自動化;2005年09期
6 趙立杰,王昕,耿蕊;一種新型運動軌跡規(guī)劃算法研究[J];機(jī)電工程技術(shù);2004年12期
7 羅福源;游有鵬;尹涓;;NURBS曲線S形加減速雙向?qū)?yōu)插補算法研究[J];機(jī)械工程學(xué)報;2012年05期
8 胡建華,廖文和,周儒榮;CNC系統(tǒng)中幾種升降速控制曲線的研究與比較[J];南京航空航天大學(xué)學(xué)報;1999年06期
9 游有鵬,王珉,朱劍英;參數(shù)曲線的自適應(yīng)插補算法[J];南京航空航天大學(xué)學(xué)報;2000年06期
10 羅鈞;汪俊;劉學(xué)明;張平;陳建端;;基于S型加減速的自適應(yīng)前瞻NURBS曲線插補算法[J];計算機(jī)集成制造系統(tǒng);2013年01期
相關(guān)博士學(xué)位論文 前1條
1 沈洪W
本文編號:2022276
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2022276.html