變速?zèng)_壓對(duì)板料拉深成形質(zhì)量影響研究
本文選題:304不銹鋼 + 盒形件。 參考:《合肥工業(yè)大學(xué)》2015年碩士論文
【摘要】:304奧氏體不銹鋼兼顧了室溫力學(xué)性能、加工性能和耐蝕性等多方面優(yōu)良性能以及經(jīng)濟(jì)性,且304不銹鋼具有應(yīng)變速率敏感性,是非常優(yōu)秀的沖壓成形用鋼板,在汽車(chē)等領(lǐng)域擁有廣闊的應(yīng)用前景。盒形件是金屬薄板拉深成形中較為典型的沖壓件,研究這類(lèi)件的成形規(guī)律具有重要的理論與實(shí)際意義。充液拉深作為一種全新的軟模成形方法,可簡(jiǎn)化模具結(jié)構(gòu)、降低生產(chǎn)成本和提高零件成形質(zhì)量,受到世界沖壓行業(yè)的高度認(rèn)可和廣泛關(guān)注。另外一方面,根據(jù)沖壓零件不同階段的變形特點(diǎn),采用變化的成形速度模式,通過(guò)控制板料流動(dòng)和應(yīng)變速率的大小,改變變形區(qū)的應(yīng)力、應(yīng)變狀態(tài),可以提高板料的成形性能和減少拉裂起皺等缺陷。因此,本文以304不銹鋼板材為材料,研究變化的成形速度對(duì)典型沖壓件盒形件充液拉深過(guò)程的影響,為該類(lèi)零件沖壓速度的選擇提供參考。其主要研究?jī)?nèi)容包括:(1)對(duì)304不銹鋼板材進(jìn)行室溫拉伸實(shí)驗(yàn),深入研究應(yīng)變速率對(duì)304不銹鋼室溫拉伸組織與性能的影響,研究結(jié)果表明應(yīng)變速率變化引起304不銹鋼中馬氏體含量的改變,從而影響304不銹鋼的最終力學(xué)性能。(2)對(duì)盒形件的拉深成形工藝進(jìn)行分析,并從最大主應(yīng)變(x1)、最大減薄率(x2)、最大等效應(yīng)力(x3)、節(jié)點(diǎn)厚度變化量之和(x4)、安全節(jié)點(diǎn)比例相反數(shù)(x5)五方面綜合考量,建立盒形件拉深成形質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)y,y值越小,表明成形質(zhì)量越好。(3)結(jié)合CAE技術(shù)和正交試驗(yàn)設(shè)計(jì)方法,通過(guò)極差分析得出拉深各階段速度對(duì)成形質(zhì)量影響大小依次為:V1V3V4V2V5 (V1-V5分別為拉深行程中5個(gè)階段:0、1/4H、1/2H、3/4H、H對(duì)應(yīng)的成形速度,H為拉深深度)。數(shù)值模擬結(jié)果表明采用正交試驗(yàn)優(yōu)化后的成形速度曲線(即V1 (8mm/s)-V2(3mm/s)-V3 (3mm/s)-V4 (13mm/s)-V5 (3mm/s))進(jìn)行盒形件的充液拉深,所獲得盒形件的成形質(zhì)量得到提高,綜合指標(biāo)y值減小到0.1203。(4)利用BP神經(jīng)網(wǎng)絡(luò)智能預(yù)測(cè)模型對(duì)不同成形速度對(duì)應(yīng)的成形質(zhì)量數(shù)據(jù)樣本進(jìn)行訓(xùn)練,保證最大誤差不高于5%,再利用遺傳算法進(jìn)一步尋優(yōu),最終獲得“最優(yōu)”成形速度曲線,即V1 (3mm/s)-V2(7mm/s)-V3(11mm/s)-V4(14mm/s)-V5(8mm/s)。數(shù)值模擬結(jié)果表明相比于正交試驗(yàn)優(yōu)化后的成形速度曲線,采用神經(jīng)網(wǎng)絡(luò)結(jié)合遺傳算法優(yōu)化后的成形速度曲線進(jìn)行充液拉深所獲得盒形件的成形質(zhì)量得到進(jìn)一步提高,綜合指標(biāo)y值進(jìn)一步減小到0.0827。(5)對(duì)課題組現(xiàn)有100t充液拉深設(shè)備進(jìn)行改進(jìn),實(shí)現(xiàn)變速拉深。在此基礎(chǔ)上,對(duì)不同成形速度對(duì)盒形件充液拉深成形質(zhì)量影響進(jìn)行實(shí)驗(yàn)研究,驗(yàn)證BP神經(jīng)網(wǎng)絡(luò)和遺傳算法獲得“最優(yōu)”成形速度曲線的可靠性。實(shí)驗(yàn)結(jié)果表明,在盒形件充液拉深的生產(chǎn)實(shí)際中,我們可采用先上升后下降型成形速度曲線,且保證速度變化平穩(wěn),進(jìn)一步提高盒形件的成形質(zhì)量。
[Abstract]:304 austenitic stainless steel has excellent mechanical properties at room temperature, processing property and corrosion resistance, and economy. 304 stainless steel is a very good sheet for stamping forming because of its strain rate sensitivity. In the automobile and other fields have a broad application prospects. Box is a typical stamping part in sheet metal drawing. It is of great theoretical and practical significance to study the forming law of this kind of parts. As a new soft die forming method, liquid filling drawing can simplify the die structure, reduce the production cost and improve the forming quality of parts. It has been highly recognized and widely concerned by the stamping industry all over the world. On the other hand, according to the deformation characteristics of different stages of stamping parts, by controlling the sheet metal flow and the size of strain rate, the stress and strain state in the deformation zone can be changed by adopting the variable forming speed mode. It can improve the formability of sheet metal and reduce the defects such as crack and wrinkle. Therefore, in this paper, 304 stainless steel sheet is used as the material to study the influence of different forming speed on the drawing process of typical punch box parts, which provides a reference for the selection of stamping speed of this kind of parts. The main research contents include: (1) tensile test at room temperature on 304 stainless steel sheet, and further study on the effect of strain rate on tensile structure and properties of 304 stainless steel at room temperature. The results show that the change of strain rate leads to the change of martensite content in 304 stainless steel, which affects the ultimate mechanical properties of 304 stainless steel. From the five aspects of the maximum principal strain (x 1), the maximum thinning rate (x 2), the maximum equivalent stress (x 3), the sum of the changes of the thickness of the joints (x 4) and the opposite ratio of the safe joints (x 5), the smaller the yy value of the evaluation standard for the quality of the box drawing forming is established. It shows that the better the forming quality is, the better is the combination of CAE technology and orthogonal design method. By means of range analysis, it is found that the influence of drawing speed on forming quality is in the order of: V1V3V3V4V2V5 / V1-V5, respectively. The forming speed corresponding to 5 stages in the drawing stroke: 1 / 0 / 4HU / 1 / 2H / 3 / 4H / H is the depth of drawing. The results of numerical simulation show that by using the optimized velocity curve (that is, V1 / 8mm / sn-V2N 3mm / s-V3 / 3mm / sr-V4 / 13mm / s-V5 / 3mm / s), the forming quality of the box-shaped parts has been improved by using the optimized forming velocity curve (V1 / 8mm / s-1 / -V2n / 3mm / v _ 3 / v _ 4 / 13 mm / v _ 5 / 3mm / s ~ (-1). The comprehensive index y value is reduced to 0.1203.4.) the BP neural network intelligent prediction model is used to train the sample of forming quality data corresponding to different forming speeds to ensure that the maximum error is not higher than 5, and then the genetic algorithm is used to further search for the best. The "optimal" forming speed curve was obtained, that is, V1 / 3mm / sm-1 / V2 + 7mm / V3 / V3 / 11mmsN / V4 / 14mm / V5 / 8mm / sg. The numerical simulation results show that compared with the optimized forming speed curve of orthogonal test, the forming quality of the box is further improved by the use of neural network and genetic algorithm to optimize the forming speed curve. The comprehensive index y value is further reduced to 0.0827.5) the existing 100 t hydraulic drawing equipment in our group is improved to realize variable speed drawing. On the basis of this, the effect of different forming speeds on the forming quality of liquid filled deep drawing of box-shaped parts is studied experimentally, and the reliability of the "optimal" forming speed curve obtained by BP neural network and genetic algorithm is verified. The experimental results show that in the production practice of liquid-filled drawing of box-shaped parts, we can use the curve of forming speed of rising first and then decreasing, and ensure that the change of velocity is stable, and further improve the forming quality of box-shaped parts.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TG386
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊連發(fā);伍世榮;田玲;劉政;;一種有效提高拉深成形性能的方法[J];金屬成形工藝;2002年02期
2 洪慎章,周琦;不銹鋼儀器盒拉深成形工藝[J];鍛壓裝備與制造技術(shù);2004年03期
3 張慶豐;周旭東;楊滌心;刑建斌;;盤(pán)形件增量拉深成形過(guò)程的數(shù)值模擬[J];機(jī)械工程材料;2007年03期
4 龔紅英;李名堯;黃金湘;姚華;;大型復(fù)雜汽車(chē)零件在拉深成形過(guò)程中的摩擦特性研究[J];塑性工程學(xué)報(bào);2007年06期
5 彭建超;;鎖帽零件拉深成形的工藝設(shè)計(jì)[J];模具技術(shù);2007年06期
6 雷曉燕;李健;;基于數(shù)值模擬的拉深成形質(zhì)量評(píng)價(jià)方法[J];科技傳播;2010年03期
7 柳建安;肖亮;劉佳杰;;圓筒件拉深成形過(guò)程數(shù)值模擬研究[J];制造技術(shù)與機(jī)床;2010年05期
8 胡佰毅;;某天線振子的拉深成形工藝研究與應(yīng)用[J];精密成形工程;2013年04期
9 余永和;洗衣機(jī)鋼質(zhì)內(nèi)桶一次拉深成形[J];模具通訊;1984年02期
10 張志唐;;錐形件拉深成形[J];模具技術(shù);1984年04期
相關(guān)會(huì)議論文 前10條
1 顧善德;;深拉深成形不銹鋼制件口部豎向裂紋和季節(jié)性開(kāi)裂初探[A];塑性加工技術(shù)文集[C];1992年
2 黃亞娟;丘宏揚(yáng);;轎車(chē)發(fā)動(dòng)機(jī)罩外板拉深成形數(shù)值模擬研究[A];第十屆粵港機(jī)電工程技術(shù)與應(yīng)用研討會(huì)暨梁天培教授紀(jì)念會(huì)文集[C];2008年
3 楊連發(fā);鄒冬平;;雙金屬疊層復(fù)合板拉深成形的數(shù)值模擬[A];人才、創(chuàng)新與老工業(yè)基地的振興——2004年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2004年
4 陳小芳;扶名福;袁志軍;;半球面形件拉深成形有限元模擬[A];第18屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅰ冊(cè)[C];2009年
5 王雅群;邢輝;;錐形薄壁件拉深成形條件的研究[A];中國(guó)煙草學(xué)會(huì)2010年學(xué)術(shù)年會(huì)論文集[C];2010年
6 周朝輝;吉衛(wèi);曹海橋;;曲面殼體熱拉深成形及有限元模擬[A];中國(guó)工程物理研究院科技年報(bào)(2002)[C];2002年
7 趙軍;殷t,
本文編號(hào):1956903
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1956903.html