TIG焊電弧-熔池傳熱與流動數(shù)值模擬
本文選題:鎢極惰性氣體保護焊 + 統(tǒng)一模型; 參考:《機械工程學(xué)報》2015年10期
【摘要】:針對鎢極惰性氣體保護(Tungsten inert gas,TIG)焊,采用一組滿足整個求解域的偏微分方程組和合理的邊界條件,建立包括鎢極、電弧和母材的三維瞬態(tài)統(tǒng)一模型。以SUS304不銹鋼為母材,求解獲得電弧-電極(熔池)的溫度場、流場、壓力、電流密度、電磁力等結(jié)果,并與已有的試驗結(jié)果和其他相關(guān)的研究結(jié)果做對比。在此基礎(chǔ)上,通過分析陽極熱輸入,求得焊接熱效率為86.3%。重點比較浮力、電磁力、等離子流拉力和Marangoni剪切力單獨作用下的熔池流動特性,并將計算結(jié)果和格拉曉夫數(shù)Gr、磁雷諾數(shù)Rm和表面張力雷諾數(shù)Ma相結(jié)合,分析了這幾種驅(qū)動力的相對作用大小,將計算結(jié)果和Peclet數(shù)Pe相結(jié)合強調(diào)了熔池?zé)釋α髋c熱傳導(dǎo)的相對作用。結(jié)果表明,與等離子拉力和Marangoni剪切力相比,浮力和電磁力對熔池對流的作用較小;等離子拉力和Marangoni剪切力處于同一數(shù)量級,而Marangoni剪切力大于等離子流拉力,兩者共同作用使熔池表面金屬由內(nèi)向外流動。與熱傳導(dǎo)相比,熔池金屬這種向外流動導(dǎo)致的熱對流主導(dǎo)傳熱過程,是造成TIG焊寬而且淺的焊縫形貌的本質(zhì)原因。
[Abstract]:For tungsten inert gas shielded Tungsten inert gas (TIG) welding, a set of partial differential equations and reasonable boundary conditions satisfying the whole solution domain are adopted to establish a three-dimensional transient unified model including tungsten electrode, arc and base metal. The results of temperature field, flow field, pressure, current density and electromagnetic force obtained by using SUS304 stainless steel as the base metal were calculated and compared with the experimental results and other related research results. On this basis, by analyzing the anodic heat input, the welding heat efficiency is obtained to be 86.3. The characteristics of molten pool flow under the action of buoyancy, electromagnetic force, plasma flow tension and Marangoni shear force are compared, and the calculated results are combined with Graschev number, magnetic Reynolds number RM and surface tension Reynolds number Ma. The relative action of these driving forces is analyzed, and the relative effect of heat convection and heat conduction in the molten pool is emphasized by combining the calculated results with the Peclet number Pe. The results show that the effect of buoyancy and electromagnetic force on molten pool convection is smaller than that of plasma tension and Marangoni shear force, and the plasma tension and Marangoni shear force are in the same order of magnitude, while the Marangoni shear force is larger than the plasma flow shear force. The combined action of the two causes the flow of metal on the surface of the molten pool from the inside to the outside. Compared with heat conduction, the heat convection dominating heat transfer process caused by the outward flow of molten pool metal is the essential reason for the wide and shallow weld appearance of TIG welding.
【作者單位】: 蘭州理工大學(xué)甘肅省有色金屬新材料省部共建國家重點實驗室;蘭州理工大學(xué)有色金屬合金及加工教育部重點實驗室;
【基金】:國家自然科學(xué)基金資助項目(51074084,51205179)
【分類號】:TG444.74
【參考文獻】
相關(guān)期刊論文 前5條
1 雷永平,顧向華,史耀武,村川英一;GTA焊接電弧與熔池系統(tǒng)的雙向耦合數(shù)值模擬[J];金屬學(xué)報;2001年05期
2 蘆鳳桂,姚舜,錢偉方;基于TIG焊電弧-熔池統(tǒng)一模型分析焊接電弧[J];機械工程學(xué)報;2004年05期
3 張瑞華;尹燕;樊丁;片山圣二;;A-TIG焊熔深增加機理的數(shù)值模擬[J];機械工程學(xué)報;2008年05期
4 趙明;武傳松;孫永興;;全熔透鎢極惰性氣體保護電弧焊熔池流動與傳熱動態(tài)過程的數(shù)值分析[J];機械工程學(xué)報;2009年09期
5 樊丁,陳劍虹,牛尾誠夫;TIG 電弧傳熱傳質(zhì)過程的數(shù)值分析[J];機械工程學(xué)報;1998年02期
【共引文獻】
相關(guān)期刊論文 前10條
1 殷鳳良;胡繩蓀;高忠林;趙立志;;等離子體電弧數(shù)值模擬的研究進展[J];兵器材料科學(xué)與工程;2007年06期
2 袁玉蘭;王惜寶;吳順生;朱冬妹;;活性劑在焊接中的應(yīng)用及展望[J];材料導(dǎo)報;2005年08期
3 ;Numerical Analysis of Two-Way Interaction between Weld-Pool and Arc for GTA Welding Process[J];Journal of Materials Science & Technology;2001年01期
4 樊丁,杜華云,張瑞華;GTAW電弧溫度場與流場數(shù)值模擬[J];電焊機;2004年08期
5 朱加雷;焦向東;俞建榮;蔣力培;周燦豐;薛龍;;基于ANSYS的TIG焊接電弧數(shù)值模擬研究[J];電焊機;2009年06期
6 姜澤東;;鉭薄板小間隙TIG氦弧對接焊熔池形成機理的研究[J];電焊機;2009年07期
7 冷小冰;張瑞華;王海濤;王榮;;A-TIG焊在核電管道全位置焊接中的應(yīng)用[J];電焊機;2009年08期
8 閆霞;屈金山;韓志偉;黃峰;;高溫下16Mn鋼雙絲自動埋弧焊接頭性能分析[J];電焊機;2010年01期
9 冷小冰;梁文武;張瑞華;王海濤;王榮;;厚壁304不銹鋼管A-TIG焊[J];電焊機;2010年04期
10 郭朝博;石s,
本文編號:1939984
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1939984.html