天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 金屬論文 >

于最小區(qū)域平面的角類元件角誤差測量新技術

發(fā)布時間:2018-05-05 10:37

  本文選題:平面度誤差 + 最小區(qū)域法(MZM); 參考:《北京理工大學》2015年博士論文


【摘要】:測量是制造過程中的重要一環(huán),加工的零件在按要求測量后送到組裝線,通過測量確保加工的零部件符合設計要求從而使生產(chǎn)的產(chǎn)品滿足設計性能。連同其他物理參數(shù)一起,幾何公差在滿足組裝配合要求以及產(chǎn)品性能方面起到重要作用。 測量誤差是測量值與真值的差,而現(xiàn)實中無法獲得測量參數(shù)的真值,而誤差分析是一種控制測量誤差的有效方法。測量不確定度用來針對測量誤差問題對測量結(jié)果進行評價。新一代產(chǎn)品幾何技術規(guī)范(GPS)是一個幾何規(guī)范鏈連接幾何產(chǎn)品周期全過程,包括研究、開發(fā)、設計、生產(chǎn)、檢驗/驗證其交貨、使用和維護。 本文提出了角度元件如棱鏡、多角形、量塊以及類似的部件的角度測量新方法。新方法基于最小區(qū)域平面以及圓周封閉原則。最小區(qū)域平面根據(jù)ISO12781-1標準通過優(yōu)化技術利用最小區(qū)域法確定。這種新方法可以測量角度參數(shù)如的角度元件各面之間、步進角和累積步進角的誤差等。相對于其它測量方法如利用自準直儀和干涉儀的測量方法,新方法顯示了其具有的簡單和合理的有點。 和其他類型的形狀誤差一樣,,平面度誤差是影響零件功能的一個重要特性,因此角度測量需要考慮角平面的平面度的影響。本文還給出了平面度誤差測量的遺傳算法的具體代碼以及利用最小區(qū)域發(fā)確定最小區(qū)域平面的方法。 本文借助于平面度的評價方法給出了基于最小區(qū)域平面的角元件的角度定義,建立了測量平面度、最小區(qū)域平面和各種角參數(shù)的最小區(qū)域法數(shù)學模型。 本文研究了平面度誤差和角度誤差的不確定度誤差的評價方法,利用新一代產(chǎn)品幾何技術規(guī)范標準對平面度誤差和角度誤差進行了驗證。建立了確定傳遞系數(shù)的數(shù)學方法。平面度誤差、平直度平面的確立,角度誤差及其評價分析都在新一代產(chǎn)品幾何技術規(guī)范標準框架之內(nèi)。
[Abstract]:Measurement is an important part in the manufacturing process. The machined parts are measured and sent to the assembly line according to the requirements. Through the measurement, the manufactured parts meet the design requirements so that the products can meet the design performance. Together with other physical parameters, geometric tolerances play an important role in meeting assembly requirements and product performance. The measurement error is the difference between the measurement value and the true value, but the true value of the measurement parameter can not be obtained in reality, and error analysis is an effective method to control the measurement error. Measurement uncertainty is used to evaluate the measurement results in view of measurement errors. GPSs is a whole process of geometric product cycle, including research, development, design, production, inspection / verification, delivery, use and maintenance. A new method for angle measurement of angular elements such as prism, polygonal, measuring blocks and similar components is presented in this paper. The new method is based on the principle of minimum region plane and circular closure. The minimum region plane is determined by using the minimum region method according to the ISO12781-1 standard. The new method can be used to measure the errors of angle parameters such as the error of the angle elements, the step angle and the cumulative step angle. Compared with other measurement methods such as autocollimator and interferometer, the new method shows its simplicity and rationality. Like other types of shape errors flatness error is an important characteristic that affects the function of parts so the influence of angle plane on flatness should be considered in angle measurement. In this paper, the code of genetic algorithm for flatness error measurement and the method of using minimum region to determine the minimum region plane are given. In this paper, the angle definition of angle element based on minimum area plane is given by means of flatness evaluation method, and the mathematical model of minimum region method for measuring flatness, minimum area plane and all kinds of angle parameters is established. In this paper, the evaluation method of uncertainty error of flatness error and angle error is studied, and the flatness error and angle error are verified by the new product geometric specification standard. A mathematical method for determining the transfer coefficient is established. The flatness error, flatness plane, angle error and its evaluation analysis are all within the framework of the new product geometric technical specification standard.
【學位授予單位】:北京理工大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TG82

【參考文獻】

相關期刊論文 前1條

1 崔長彩;黃富貴;張認成;李兵;;粒子群優(yōu)化算法及其在圓度誤差評定中的應用[J];計量學報;2006年04期



本文編號:1847368

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1847368.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶83ecc***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com