螺旋錐齒輪數(shù)控加工及精度控制關鍵技術研究
本文選題:螺旋錐齒輪 + 數(shù)控加工; 參考:《合肥工業(yè)大學》2015年博士論文
【摘要】:齒輪的加工質量和加工效率在很大程度上反映了一個國家的機械工業(yè)水平。隨著科學技術的發(fā)展,裝備水平的提高,對齒輪傳動產(chǎn)品的要求也越來越高。螺旋錐齒輪是傳遞交錯動力的基礎元件,因其形狀復雜,技術問題多,制造難度大,一直以來深為業(yè)界所重視。目前國內螺旋錐齒輪加工所用的機床,其數(shù)控系統(tǒng)大多是國外的數(shù)控系統(tǒng),如德國的SIEMENS、日本的FANUC和PHILIPS公司的3460系統(tǒng),或者是在通用數(shù)控系統(tǒng)(如西門子840D)基礎上進行二次開發(fā)來實現(xiàn)的,而將齒輪加工的相關技術嵌入到數(shù)控系統(tǒng)中,其專用性缺乏,可擴展性不強。為了提高齒輪的加工精度,傳動性能,就應從源頭開始即機床母機的大腦-數(shù)控系統(tǒng)出發(fā),開發(fā)屬于專業(yè)化的齒輪數(shù)控系統(tǒng)而不依賴于國外的數(shù)控系統(tǒng)。因此,本文提出了一種嵌入式的螺旋錐齒輪加工數(shù)控系統(tǒng),進行了軟件和硬件的設計開發(fā),為了進一步提高螺旋錐齒輪數(shù)控加工的精度,開展了如下研究:1.通過對傳統(tǒng)搖臺式螺旋錐齒輪加工原理以及數(shù)控式加工機床的對比分析和研究,剖析了格里森制齒的大輪展成法加工、成形法加工,小輪刀傾法加工、變性法加工等四種切齒加工方法,應用空間坐標變換,分別推導出螺旋錐齒輪上述四種加工方法的數(shù)控加工模型。2.研究了刀具誤差對齒面精度的影響,從盤形刀具的齒形角和刀盤半徑出發(fā),在不考慮機床運動精度情況下,推導出了刀具半徑偏差與齒輪齒廓誤差之間的定量映射關系模型以及刀具齒形角偏差與齒輪齒廓誤差之間的定量映射關系模型;并對刀具半徑偏差和刀具齒形角偏差對齒面的影響進行了仿真模擬。為了減小刀盤偏差所帶來的齒面加工精度的下降,在開發(fā)螺旋錐齒輪數(shù)控系統(tǒng)時設計了刀具半徑誤差補償量,并推導出其計算公式,并對該刀具半徑誤差補償量進行了仿真模擬驗證,既驗證螺旋錐齒輪數(shù)控加工數(shù)學模型的正確性也說明了刀具誤差補償模型可有效提高螺旋錐齒輪數(shù)控加工的表面加工精度。3.根據(jù)所推導出的螺旋錐齒輪大輪展成法加工、小輪刀傾法加工、小輪變性法加工對多軸聯(lián)動的不同要求,分別構建相應的電子齒輪箱結構模型。結合螺旋錐齒輪加工過程中刀具運動軌跡的特點,將交叉耦合控制模型應用在有聯(lián)動要求的進給軸之間,建立其交叉耦合補償模型,并進行了實驗驗證,其結果顯示交叉耦合控制模型的有效性。4.為了提高螺旋錐齒輪數(shù)控機床的加工精度,在分析螺旋錐齒輪數(shù)控機床運動特點的基礎上,建立了其運動模型,推導出了刀具與工件間的坐標轉換關系式。接著基于多體系統(tǒng)理論對螺旋錐齒輪數(shù)控機床的拓撲結構進行了描述,對螺旋錐齒輪數(shù)控機床的基坐標系和各局部坐標系進行了設定,并結合機床誤差運動學原理,推導出了用齊次變換矩陣描述的誤差模型。針對誤差補償運動與誤差模型(位姿誤差)間存在的耦合關系,基于小誤差補償運動假設和微分變換原理,并結合螺旋錐齒輪數(shù)控加工的展成法加工電子展成的關系對誤差補償運動進行了解耦,獲得了影響螺旋錐齒輪數(shù)控加工精度的各運動副的位置或方向誤差補償量。5.在嵌入式多CPU數(shù)控系統(tǒng)硬件平臺的基礎上,采用模塊化思想,設計了數(shù)控系統(tǒng)軟件總體架構,并對螺旋錐齒輪數(shù)控加工自動編程系統(tǒng)進行了設計,對螺旋錐齒輪數(shù)控加工自動編程系統(tǒng)的工作原理以及自動編程系統(tǒng)進行功能需求分析,并在此基礎上提出系統(tǒng)架構,包括輸入模塊、輸出模塊、自動編程模塊、系統(tǒng)參數(shù)設置模塊、通信模塊等等。詳細剖析了數(shù)控系統(tǒng)軟件內部的信息流向,為了實現(xiàn)螺旋錐齒輪數(shù)控的展成加工,將電子齒輪箱無縫隙地嵌入在齒輪加工數(shù)控系統(tǒng)中。分析并研究了電子齒輪箱打開與關閉瞬間速度的處理策略,避免電子齒輪箱突然開啟或關閉時對跟隨軸產(chǎn)生的速度突變。在自行開發(fā)的嵌入式齒輪加工數(shù)控系統(tǒng)中實現(xiàn)了電子齒輪箱的NC控制,通過程序運行實驗數(shù)據(jù)與理論計算數(shù)據(jù)的對比分析,說明了電子齒輪箱軟件執(zhí)行的正確性。6.對自行開發(fā)的嵌入式螺旋錐齒輪數(shù)控系統(tǒng)進行通過程序運行實驗數(shù)據(jù)與計算數(shù)據(jù)對比,說明該軟件執(zhí)行的正確性。將所設計開發(fā)包含電子齒輪箱控制模型的螺旋錐齒輪數(shù)控系統(tǒng),在六軸實驗平臺上分別進行展成法加工和變性法加工的運動控制實驗,并對實驗結果進行定量分析和比較,證明本文所提出的螺旋錐齒輪的數(shù)控加工的控制結構和實現(xiàn)方式具有較好的可控性。
[Abstract]:The machining quality and processing efficiency of the gear to a great extent reflect the level of the machinery industry in a country. With the development of science and technology and the improvement of the equipment level, the demand for gear transmission products is becoming higher and higher. The spiral bevel gear is the basic element to transfer the staggered power, because its shape is complex, the technical problems are many, and the manufacturing difficulty is great. At present, the CNC systems used in domestic spiral bevel gear machining are mostly CNC systems abroad, such as the SIEMENS of Germany, the 3460 systems of FANUC and PHILIPS in Japan, or the two development on the basis of the universal numerical control system (such as SIEMENS 840D), and the gear processing. In order to improve the machining accuracy and transmission performance of the gear, it should start from the source of the machine tool machine, which is a specialized gear CNC system without relying on the foreign numerical control system. Therefore, this paper puts forward a kind of embedded system. The numerical control system of spiral bevel gear machining is designed and developed. In order to further improve the precision of spiral bevel gear NC machining, the following research is carried out. 1. through the comparative analysis and Research on the machining principle of the traditional spiral bevel gear and the CNC machine tool, the Gleason tooth making is analyzed. Four kinds of cutting methods, such as large wheel expansion, forming method, small wheel knife tilting and denaturing processing, are used to deduce the numerical control model.2. of four kinds of spiral bevel gear machining methods, respectively. The influence of tool error on the tooth surface accuracy is studied, from the tooth angle of the disc cutter and the radius of the cutter disk. The quantitative mapping relation model between the tool radius deviation and the gear profile error, and the quantitative mapping relation model between the cutter tooth profile deviation and the gear profile error are derived without considering the motion accuracy of the machine tool, and the influence of the tool radius deviation and the tooth profile deviation on the tooth surface is simulated. In order to reduce the reduction of the machining precision of the tooth surface caused by the deviation of the cutter disk, the error compensation amount of the tool radius is designed in the development of the spiral bevel gear NC system, and its calculation formula is derived. The simulation verification is carried out on the error compensation of the tool radius error, and the correctness of the mathematical model of the spiral bevel gear NC machining is also verified. It is clear that the tool error compensation model can effectively improve the surface machining precision of the spiral bevel gear NC machining,.3. based on the spiral bevel gear large wheel spreading method, the small wheel cutter tilting method, the small wheel denaturation method for the different requirements of multi axis linkage, and the construction of the corresponding structural model of the electronic gear box. In the process of machining, the cross coupling control model is applied to the feed shaft with linkage requirements, and the cross coupling compensation model is established. The results show that the effectiveness of the cross coupling control model.4. is to improve the machining precision of the spiral bevel gear NC machine tool and analyze the spiral cone. On the basis of the motion characteristics of the gear NC machine tool, the motion model is established, and the coordinate transformation relation between the tool and the workpiece is deduced. Then the topology of the spiral bevel gear NC machine tool is described based on the multibody system theory, and the basic coordinate system and the local coordinate system of the spiral bevel gear NC machine tool are set. Based on the kinematic principle of machine tool error, the error model described by the homogeneous transformation matrix is derived. The coupling relationship between the error compensation motion and the error model (position and posture error) is based on the motion hypothesis of small error compensation and the principle of differential transformation, and the relationship of the electronic spreading of the spiral cone gear NC machining is combined. On the basis of the embedded multi CPU CNC system hardware platform, the total frame of the CNC system software is designed on the basis of the hardware platform of the embedded multi CPU CNC system, and the automatic programming of the spiral bevel gear NC machining is made by the understanding coupling of the error compensation movement. The system is designed, the working principle of the automatic programming system of spiral bevel gear NC machining and the functional requirement analysis of the automatic programming system are analyzed. On this basis, the system architecture is put forward, including input module, output module, automatic programming module, system parameter setting block, communication module and so on. The software of numerical control system is analyzed in detail. In order to realize the numerical control of spiral bevel gear numerical control, the electronic gear box is embedded in the CNC system of gear processing. The processing strategy of the speed of the opening and closing of the electronic gear box is analyzed and studied to avoid the sudden change of the speed of the following shaft when the electronic gear box is suddenly opened or closed. The NC control of the electronic gear box is realized in the embedded gear machining numerical control system developed by the bank. Through the comparison and analysis of the experimental data and the theoretical calculation data, the correctness of the software implementation of the electronic gear box is explained by.6.. The experimental data and the calculation of the program operation of the self developed embedded spiral bevel gear NC system are carried out. Comparison of the data shows the correctness of the software implementation. The design and development of the spiral bevel gear CNC system containing the control model of the electronic gear box is designed and developed on the six axis experimental platform. The experimental results are analyzed and compared with the results of the experiment, which proves the helix proposed in this paper. The control structure and implementation mode of the NC machining of bevel gears have better controllability.
【學位授予單位】:合肥工業(yè)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TG61
【相似文獻】
相關期刊論文 前10條
1 白秀芳,劉敏;螺旋錐齒輪等高齒制的加工和安裝調整[J];中國科技信息;2005年09期
2 馬浚川;;現(xiàn)代小型企業(yè)對螺旋錐齒輪的簡化計算及加工探析[J];機電信息;2012年27期
3 張海波;劉國棟;程雷;;螺旋錐齒輪逆向造型研究[J];制造技術與機床;2013年03期
4 肖慶博 ,周應虎;加工大型螺旋錐齒輪的新方法[J];機床;1983年12期
5 蔣毓忠;;螺旋錐齒輪多品種小量生產(chǎn)加工方法的探討[J];二汽科技;1983年01期
6 梁桂明;;高品質螺旋錐齒輪的優(yōu)化設計[J];機械制造;1989年11期
7 馮憶艱;克林貝格螺旋錐齒輪的誘導法曲率[J];淮南礦業(yè)學院學報;1996年02期
8 張國政;;螺旋錐齒輪數(shù)控銑削精加工方法研究[J];重慶科技學院學報(自然科學版);2014年02期
9 季春香;螺旋錐齒輪加工中的微分學應用[J];青海大學學報(自然科學版);2002年01期
10 呂曉紅,廖忠;KЦ_2-1000型減速機螺旋錐齒輪計算及參數(shù)分析[J];包鋼科技;2004年05期
相關會議論文 前7條
1 任東鋒;方宗德;魏冰陽;;螺旋錐齒輪遠程設計分析服務系統(tǒng)開發(fā)與研究[A];全國生產(chǎn)工程第九屆年會暨第四屆青年科技工作者學術會議論文集(二)[C];2004年
2 薛德余;王勇;;基于實際切齒方法的螺旋錐齒輪齒面反求[A];人才、創(chuàng)新與老工業(yè)基地的振興——2004年中國機械工程學會年會論文集[C];2004年
3 周彥偉;楊伯原;鄧效中;梁桂明;;利用“非零”變位改善螺旋錐齒輪的綜合強度[A];第三屆全國青年摩擦學學術會議論文集[C];1995年
4 許文全;曾輝藩;;螺旋錐齒輪數(shù)字化制造的關鍵技術及研究現(xiàn)狀[A];全國先進制造技術高層論壇暨第九屆制造業(yè)自動化與信息化技術研討會論文集[C];2010年
5 劉春華;馮立艷;嚴子深;;基于Pro/E的螺旋錐齒輪三維建模與仿真[A];全國先進制造技術高層論壇暨第九屆制造業(yè)自動化與信息化技術研討會論文集[C];2010年
6 楊鋒軍;孟春景;;CBN硬車削在螺旋錐齒輪中的應用研究[A];2008年安徽省科協(xié)年會機械工程分年會論文集[C];2008年
7 張帥;;螺旋錐齒輪減速器在直進式拉絲機中的使用[A];2011金屬制品行業(yè)技術信息交流會論文集[C];2011年
相關重要報紙文章 前10條
1 徐榮;株洲造出國內最大螺旋錐齒輪[N];湖南日報;2008年
2 記者 李文峰;螺旋錐齒輪生產(chǎn)線填補國內空白[N];湖南日報;2008年
3 蘇曉洲 龍行才;我國自主建成螺旋錐齒輪數(shù)字生產(chǎn)線[N];機電商報;2005年
4 聞U,
本文編號:1829686
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1829686.html