難變形金屬熱強(qiáng)旋成形方法研究
本文選題:難變形金屬 + 熱強(qiáng)旋; 參考:《華南理工大學(xué)》2015年碩士論文
【摘要】:難變形金屬化學(xué)成分復(fù)雜、合金元素含量高、冷加工變形抗力大、成形性能差,其中鎳基高溫合金因具有較高的高溫強(qiáng)度、良好的耐腐蝕、抗氧化性等綜合性能,廣泛應(yīng)用于航空航天、船舶、燃?xì)廨啓C(jī)、能源、化工和電工電子等復(fù)雜惡劣環(huán)境中。對于應(yīng)用于飛機(jī)發(fā)動機(jī)、燃?xì)廨啓C(jī)燃燒室的鎳基高溫合金Haynes230合金筒形件的成形加工,現(xiàn)在采用的制造方法非常保守,一般采用板料卷制后焊接的方法加工Haynes230合金筒形件。近年來,隨著熱強(qiáng)旋成形技術(shù)在鈦合金、鎂合金等難變形金屬材料成形方面的應(yīng)用研究越來越多,成形工藝和加工技術(shù)得到不斷發(fā)展。利用熱強(qiáng)旋來加工難變形金屬已表現(xiàn)出極大的優(yōu)勢,對推動高端核心裝備先進(jìn)成形技術(shù)的發(fā)展具有重要的科學(xué)意義和廣闊的應(yīng)用前景。本文主要以熱強(qiáng)旋成形方法加工難變形金屬Haynes230合金筒形件為研究內(nèi)容,制定了合理的熱強(qiáng)旋成形工藝方案,利用有限元仿真分析軟件ABAQUS對熱強(qiáng)旋成形過程進(jìn)行了模擬,并對熱強(qiáng)旋成形后的工件進(jìn)行了成形精度分析和組織性能分析。本文主要研究內(nèi)容和結(jié)論如下:1、根據(jù)材料的管坯尺寸、力學(xué)性能特性和強(qiáng)力旋壓成形原理,制定了難變形金屬Haynes230合金筒形件的熱強(qiáng)旋成形工藝參數(shù),包括道次減薄率、進(jìn)給比和旋壓溫度等。針對熱加工過程中常用的加熱形式:火焰加熱和感應(yīng)加熱,通過對比分析兩種加熱方式在溫度均勻性、加熱速度、溫度可控性等方面的優(yōu)缺點(diǎn),選擇高頻感應(yīng)加熱方式對管坯進(jìn)行加熱,采用溫控儀對加熱溫度進(jìn)行控制。同時,旋前對芯模進(jìn)行有效的預(yù)熱,大大減少了坯料對芯模的傳熱,使坯料溫度分布較均勻。2、根據(jù)強(qiáng)力旋壓成形原理,考慮溫度對成形過程的影響,設(shè)計出熱強(qiáng)旋所需的工裝,對HGQX-LS立式熱強(qiáng)旋旋壓機(jī)床進(jìn)行了適當(dāng)?shù)母脑?配置了測溫儀、溫控儀和高頻感應(yīng)加熱設(shè)備,為熱強(qiáng)旋試驗(yàn)的順利進(jìn)行奠定了基礎(chǔ)。3、利用課題組獲得的材料高溫本構(gòu)模型,借助有限元數(shù)值模擬軟件ABAQUS對熱強(qiáng)旋成形過程進(jìn)行了有限元數(shù)值模擬,得到了熱強(qiáng)旋溫度和進(jìn)給比對旋壓成形過程的影響規(guī)律,為后續(xù)試驗(yàn)提供了重要的參考依據(jù)。4、對旋壓件壁厚偏差、直線度、橢圓度進(jìn)行了分析,由于材料的熱脹冷縮、材料的回彈和機(jī)床的退讓,熱強(qiáng)旋后的工件精度變差;原始坯料的表面質(zhì)量對熱旋后工件的表面質(zhì)量影響較大;同時,合適的進(jìn)給比是獲得良好表面質(zhì)量工件的重要條件。5、對熱強(qiáng)旋工件進(jìn)行了力學(xué)性能試驗(yàn),熱強(qiáng)旋后工件的強(qiáng)度大大增加,加工硬化非常明顯。分析了不同溫度下旋壓件的顯微組織,與冷旋一樣,旋壓件的顯微組織為纖維組織,且隨旋壓溫度的升高,顯微組織中的再結(jié)晶晶粒越來越多,旋壓件的強(qiáng)度隨旋壓溫度的升高呈現(xiàn)出下降的趨勢。
[Abstract]:The chemical composition of refractory metals is complex, the content of alloy elements is high, the deformation resistance of cold working is large, and the formability is poor. Among them, nickel-based superalloys have high high temperature strength, good corrosion resistance, oxidation resistance and other comprehensive properties. Widely used in aerospace, ship, gas turbine, energy, chemical and electrical and other complex adverse environment. For the forming process of nickel-base superalloy Haynes230 alloy cylinder used in aircraft engine and gas turbine combustion chamber, the manufacturing method is very conservative. Generally speaking, the Haynes230 alloy cylinder is fabricated by welding after sheet metal rolling. In recent years, more and more research has been done on the application of hot strong spin forming technology in the forming of difficult metal materials such as titanium alloy, magnesium alloy and so on, and the forming process and processing technology have been continuously developed. It has shown great advantages to use thermal strong rotation to process hard metal, which is of great scientific significance and broad application prospect to promote the development of advanced forming technology of high-end core equipment. In this paper, a reasonable hot strength rotary forming process is developed, and the thermal strength spin forming process is simulated by the finite element simulation software ABAQUS, which is mainly based on the hot strong spin forming method for the cylinder parts of metal Haynes230 alloy which is difficult to be deformed by means of the thermal strength spin forming method. The forming accuracy and microstructure and properties of the workpiece formed by hot spinning are analyzed. The main contents and conclusions of this paper are as follows: 1. According to the size of tube billet, mechanical properties of material and the principle of strong spinning forming, the technical parameters of thermal strength spinning forming of the hard deformed metal Haynes230 alloy cylindrical parts, including the pass thinning rate, are worked out. Feed ratio and spinning temperature etc. In view of the common heating forms in the process of hot working: flame heating and induction heating, the advantages and disadvantages of the two heating methods in temperature uniformity, heating speed, temperature controllability and so on are compared and analyzed. The tube billet is heated by high frequency induction heating, and the heating temperature is controlled by temperature controller. At the same time, the effective preheating of the core die before spinning greatly reduces the heat transfer between the billet and the core die, and makes the temperature distribution of the blank more uniform. According to the principle of strong spinning forming and considering the influence of temperature on the forming process, the equipment required for heat intensity spinning is designed. In this paper, the HGQX-LS vertical heat strength spinning machine has been modified properly, and the thermometer, temperature control instrument and high frequency induction heating equipment have been equipped, which has laid the foundation for the successful thermal strength spin test. The material constitutive model of high temperature obtained by the research group has been used. The finite element numerical simulation software ABAQUS is used to simulate the thermal strength spinning process, and the influence of the heat intensity rotation temperature and feed ratio on the forming process is obtained. This paper provides an important reference basis for further test. The wall thickness deviation, straightness and ellipticity of spinning parts are analyzed. Due to the thermal expansion and shrinkage of materials, the springback of materials and the retreat of machine tools, the precision of workpiece with heat strength rotation becomes worse. The surface quality of the original billet has a great influence on the surface quality of the workpiece after hot spinning, at the same time, the suitable feed ratio is the important condition to obtain the workpiece with good surface quality. The strength of the workpiece is greatly increased, and the work hardening is very obvious. The microstructure of spinning parts at different temperatures is analyzed. The microstructure of spinning parts is fibrous, and with the increase of spinning temperature, the recrystallization grains in the microstructure become more and more. The strength of spinning parts decreases with the increase of spinning temperature.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TG306
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳煥銘,胡本芙,張義文,余泉茂,李慧英;飛機(jī)渦輪盤用鎳基粉末高溫合金研究進(jìn)展[J];材料導(dǎo)報;2002年11期
2 徐文臣;張恒大;單德彬;郭斌;康達(dá)昌;;TC4鈦合金輪圈熱旋成形技術(shù)研究[J];材料科學(xué)與工藝;2008年01期
3 吳統(tǒng)超;詹梅;古創(chuàng)國;蔣華兵;楊合;;大型復(fù)雜薄壁殼體第一道次旋壓成形質(zhì)量分析[J];材料科學(xué)與工藝;2011年01期
4 梁淑賢,張淳芳,吳鳳照,張忠誠,黃靜;錯距旋壓技術(shù)在鉬管生產(chǎn)中的應(yīng)用[J];稀有金屬材料與工程;1993年01期
5 梁淑賢,吳鳳照,,張淳芳;高精度薄壁鉬管旋壓工藝[J];稀有金屬材料與工程;1995年04期
6 劉冬梅;胡銳;李金山;劉毅;寇宏超;傅恒志;;Haynes 230合金在1100℃的恒溫氧化行為(英文)[J];稀有金屬材料與工程;2008年09期
7 夏琴香,阮鋒,島進(jìn),小寺秀俊,安福大輔;杯形件的單道次拉深旋壓成形工藝研究[J];鍛壓技術(shù);2002年06期
8 呂昕宇,王本賢,張士宏,許沂,李繼貞,陳福龍,王健飛;LF6合金小錐度鋁筒旋壓成形實(shí)驗(yàn)研究[J];鍛壓技術(shù);2005年03期
9 趙云豪;汪發(fā)春;沈健;;TB2鈦合金筒形件旋壓變形組織性能的研究[J];鍛壓技術(shù);2007年06期
10 陳宇;徐永超;單德彬;;TC4鈦合金錐形件溫?zé)峒粜龑?shí)驗(yàn)研究[J];鍛壓技術(shù);2008年03期
相關(guān)碩士學(xué)位論文 前2條
1 張華;CNG氣瓶熱旋壓成形工藝數(shù)值模擬[D];燕山大學(xué);2010年
2 李兵;AZ81鎂合金熱旋工藝及組織研究[D];重慶大學(xué);2010年
本文編號:1802081
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1802081.html